Midterm 2: Version E Answer Key
[latexpage]
-
\(x-y=-3\) \(x\) \(y\) 0 3 −3 0 \(x+2y=3\) \(x\) \(y\) 3 0 0 \(\dfrac{3}{2}\) 
- \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&(2x&-&5y&=&-2)(-3) \\
&(3x&-&4y&=&\phantom{-}4)(2) \\ \\
&-6x&+&15y&=&6 \\
+&6x&-&8y&=&8 \\
\midrule
&&&7y&=&14 \\
&&&y&=&2 \\ \\
&2x&-&5(2)&=&-2 \\
&2x&-&10&=&-2 \\
&&+&10&&+10 \\
\midrule
&&&2x&=&8 \\
&&&x&=&4
\end{array}\)
\((4,2)\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&(4x&+&3y&=&-29)(-2) \\
&(3x&+&2y&=&-21)(3) \\ \\
&-8x&-&6y&=&\phantom{-}58 \\
+&9x&+&6y&=&-63 \\
\midrule
&&&x&=&-5 \\ \\
&3(-5)&+&2y&=&-21 \\
&-15&+&2y&=&-21 \\
+&15&&&&+15 \\
\midrule
&&&2y&=&-6 \\
&&&y&=&-3
\end{array}\)
\((-5,-3)\) - \(\begin{array}{ll}
\begin{array}{rrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
&(x&+&y&-&3z&=&0)(-2) \\ \\
&-2x&-&2y&+&6z&=&0 \\
+&2x&-&3y&&&=&16 \\
\midrule
&&&-5y&+&6z&=&16 \\ \\
&&&(2y&-&2z&=&-12)(3) \\ \\
&&&6y&-&6z&=&-36 \\
+&&&-5y&+&6z&=&\phantom{-}16 \\
\midrule
&&&&&y&=&-20
\end{array}
& \hspace{0.25in}
\begin{array}{rrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
2x&-&3y&=&16 \\
2x&-&3(-20)&=&16 \\
2x&+&60&=&16 \\
&&-60&&-60 \\
\midrule
&&2x&=&-44 \\
&&x&=&-22 \\ \\
2y&-&2z&=&-12 \\
2(-20)&-&2z&=&-12 \\
-40&-&2z&=&-12 \\
+40&&&&+40 \\
\midrule
&&-2z&=&28 \\
&&z&=&-14
\end{array}
\end{array}\)
\((-22,-20,-14)\) - \(5-4\left[2x-2\cancel{(6x-5)^0}1-(7-2x)\right]\)
\(5-4\left[2x-2(1)-7+2x\right]\)
\(5-4\left[4x-9\right]\)
\(5-16x+36\)
\(-16x+41\) - \(3ab^4(a^2-25)\)
\(3a^3b^4-75ab^4\) - \(\begin{array}{rrrrrlrrrr}
\\ \\ \\ \\ \\ \\
&x^2&+&3x&-&6&&&& \\
\times &x^2&+&3x&-&6&&&& \\
\midrule
&x^4&+&3x^3&-&6x^2&&&& \\
&&&3x^3&+&9x^2&-&18x&& \\
+&&&&-&6x^2&-&18x&+&36 \\
\midrule
&x^4&+&6x^3&-&3x^2&-&36x&+&36
\end{array}\) - \(\polylongdiv{3x^3+18+7x^2}{x+3}\)
- \(x^2-3z+7x-21\)
\(x(x-3)+7(x-3)\)
\((x-3)(x+7)\) - \(4x^2(x+1)-9(x+1)\)
\((x+1)(4x^2-9)\)
\((x+1)(2x-3)(2x+3)\) - \((2x)^3-(3y)^3\)
\((2x-3y)(4x^2+6xy+9y^2)\) - \(x^4-625x^2+x^2-625\)
\(x^2(x^2-625)+1(x^2-625)\)
\((x^2+1)(x^2-625)\)
\((x^2+1)(x-25)(x+25)\) - \(\phantom{1}\)
\(B+G=20\Rightarrow B=20-G \\ \)
\(\begin{array}{rrrrrrrrrl}
&G&-&4&=&2(B&-&4)&& \\
&G&-&4&=&2B&-&8&& \\ \\
&G&-&4&=&2(20&-&G)&-&8 \\
&G&-&4&=&40&-&2G&-&8 \\
&G&-&4&=&32&-&2G&& \\
+&2G&+&4&&4&+&2G&& \\
\midrule
&&&3G&=&36&&&& \\
&&&G&=&12&&&& \\ \\
&&&B&=&20&-&G&& \\
&&&B&=&20&-&12&=&8 \\
\end{array}\) - \(\phantom{1}\)
\(x=16\%\text{ solution} \\ \)
\(\begin{array}{rrrrrrrr}
&16x&+&6(20)&=&12(x&+&20) \\
&16x&+&120&=&12x&+&240 \\
-&12x&-&120&&-12x&-&120 \\
\midrule
&&&4x&=&120&& \\ \\
&&&x&=&\dfrac{120}{4}&=&30\text{ ml} \\
\end{array}\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&(C&+&R&=&60)(-3.40) \\ \\
&-3.40C&-&3.40R&=&-204 \\
+&3.40C&+&3.90R&=&\phantom{-}213\\
\midrule
&&&0.50R&=&\phantom{-}9 \\ \\
&&&R&=&\dfrac{9}{0.50}\text{ or 18 kg} \\ \\
&C&+&R&=&\phantom{-}60 \\
&C&+&18&=&\phantom{-}60 \\
&&-&18&&-18 \\
\midrule
&&&C&=&\phantom{-}42\text{ kg}
\end{array}\)