"

Midterm 2: Version C Answer Key

[latexpage]

  1. \(2x-y-2=0\)
    \(x\) \(y\)
    0 −2
    1 0
    2 2
    \(2x+3y+6=0\)
    \(x\) \(y\)
    0 −2
    −3 0
    −6 2

    Graph with lines intersecting at (0,-2)

  2. \(\phantom{1}\)
    \(x+y=2\Rightarrow x=2-y \\ \)
    \(\begin{array}{rrrrrrl}
    3(2&-&y)&-&4y&=&13 \\
    6&-&3y&-&4y&=&13 \\
    -6&&&&&&-6 \\
    \midrule
    &&&&-7y&=&\phantom{-}7 \\
    &&&&y&=&-1 \\ \\
    &&&&x&=&2--1 \\
    &&&&x&=&3
    \end{array}\)
    \((3,-1)\)
  3. \(\begin{array}{rrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &4x&-&3y&=&6 \\
    +&4x&+&3y&=&2 \\
    \midrule
    &&&8x&=&8 \\
    &&&x&=&1 \\ \\
    &3y&+&4(1)&=&2 \\
    &&-&4&&-4 \\
    \midrule
    &&&3y&=&-2 \\ \\
    &&&y&=&-\dfrac{2}{3}
    \end{array}\)
    \(\left(1,-\dfrac{2}{3}\right)\)
  4. \(\begin{array}{ll}
    \begin{array}{rrrrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    \left[1\right]&(x&+&y&+&z&=&\phantom{-}6)(-2) \\
    \left[2\right]&&&(-2x&+&z&=&-3)(-1) \\ \\
    \left[1\right]&-2x&-&2y&-&2z&=&-12 \\
    +&&&2y&+&4z&=&\phantom{-}10 \\
    \midrule
    &&&-2x&+&2z&=&-2 \\
    +&&\left[2\right]&2x&-&z&=&\phantom{-}3 \\
    \midrule
    &&&&&z&=&1 \\
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    2y&+&4z&=&10 \\
    2y&+&4(1)&=&10 \\
    &-&4&&-4 \\
    \midrule
    &&2y&=&6 \\
    &&y&=&3 \\ \\
    -2x&+&z&=&-3 \\
    -2x&+&1&=&-3 \\
    &-&1&&-1 \\
    \midrule
    &&-2x&=&-4 \\
    &&x&=&2 \\
    \end{array}
    \end{array}\)
    \((2,3,1)\)
  5. \(36+\{\cancel{-2x-\left[6x-3(5-2x)\right]\}^0}1+6x^3\)
    \(36+1+6x^3\Rightarrow 6x^3+37\)
  6. \(6a^2b(a^2-9)\)
    \(6a^4b-54a^2b\)
  7. \(\begin{array}{rrrrrlrrrr}
    \\ \\ \\ \\ \\ \\
    &x^2&+&3x&+&5&&&& \\
    \times &x^2&+&3x&+&5&&&& \\
    \midrule
    &x^4&+&3x^3&+&5x^2&&&& \\
    &&&3x^3&+&9x^2&+&15x&& \\
    +&&&&&5x^2&+&15x&+&25 \\
    \midrule
    &x^4&+&6x^3&+&19x^2&+&30x&+&25
    \end{array}\)
  8. \(\polylongdiv{2x^4+x^3+4x^2-4x-5}{2x+1}\)
  9. \(x^2-x+18x-18\)
    \(x(x-1)+18(x-1)\)
    \((x-1)(x+18)\)
  10. \(2(a^2-2ab-15b^2)\)
    \(2(a^2-5ab+3ab-15b^2)\)
    \(2\left[a(a-5b)+3b(a-5b)\right]\)
    \(2(a-5b)(a+3b)\)
  11. \((2x)^3-y^3\)
    \((2x-y)(4x^2+2xy+y^2)\)
  12. \((4y^2-x^2)(4y^2+x^2)\)
    \((2y-x)(2y+x)(4y^2+x^2)\)
  13. \(\phantom{1}\)
    \(B+S=30\Rightarrow B=30-S \\ \)
    \(\begin{array}{rrrrrrr}
    B&-&10&=&4(S&-&10) \\
    30-S&-&10&=&4S&-&40 \\
    +S&+&40&&+S&+&40 \\
    \midrule
    &&60&=&5S&& \\ \\
    &&S&=&\dfrac{60}{5}&=&12 \\ \\
    &&\therefore B&=&30&-&S \\
    &&B&=&30&-&12 \\
    &&B&=&18&&
    \end{array}\)
  14. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(D&+&N&=&\phantom{1}18)(-1) \\
    &(10D&+&5N&=&120)(\div 5) \\ \\
    &-D&-&N&=&-18 \\
    +&2D&+&N&=&\phantom{-}24 \\
    \midrule
    &&&D&=&6 \\ \\
    \therefore &D&+&N&=&18 \\
    &6&+&N&=&18 \\
    &-6&&&&-6 \\
    \midrule
    &&&N&=&12
    \end{array}\)
  15. \(\phantom{1}\)
    \(\text{if }x=5\%, \text{ then }10-x=30\% \\ \)
    \(\begin{array}{rrrrcrl}
    5x&+&30(10&-&x)&=&25(10) \\
    5x&+&300&-&30x&=&\phantom{-}250 \\
    &-&300&&&&-300 \\
    \midrule
    &&&&-25x&=&-50 \\ \\
    &&&&x&=&\dfrac{-50}{-25}\text{ or 2 L of 5\%} \\ \\
    &&10&-&x&=&\text{8 L of 30\%}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.