Midterm 2: Version C Answer Key
[latexpage]
-
\(2x-y-2=0\) \(x\) \(y\) 0 −2 1 0 2 2 \(2x+3y+6=0\) \(x\) \(y\) 0 −2 −3 0 −6 2 
- \(\phantom{1}\)
\(x+y=2\Rightarrow x=2-y \\ \)
\(\begin{array}{rrrrrrl}
3(2&-&y)&-&4y&=&13 \\
6&-&3y&-&4y&=&13 \\
-6&&&&&&-6 \\
\midrule
&&&&-7y&=&\phantom{-}7 \\
&&&&y&=&-1 \\ \\
&&&&x&=&2--1 \\
&&&&x&=&3
\end{array}\)
\((3,-1)\) - \(\begin{array}{rrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&4x&-&3y&=&6 \\
+&4x&+&3y&=&2 \\
\midrule
&&&8x&=&8 \\
&&&x&=&1 \\ \\
&3y&+&4(1)&=&2 \\
&&-&4&&-4 \\
\midrule
&&&3y&=&-2 \\ \\
&&&y&=&-\dfrac{2}{3}
\end{array}\)
\(\left(1,-\dfrac{2}{3}\right)\) - \(\begin{array}{ll}
\begin{array}{rrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
\left[1\right]&(x&+&y&+&z&=&\phantom{-}6)(-2) \\
\left[2\right]&&&(-2x&+&z&=&-3)(-1) \\ \\
\left[1\right]&-2x&-&2y&-&2z&=&-12 \\
+&&&2y&+&4z&=&\phantom{-}10 \\
\midrule
&&&-2x&+&2z&=&-2 \\
+&&\left[2\right]&2x&-&z&=&\phantom{-}3 \\
\midrule
&&&&&z&=&1 \\
\end{array}
& \hspace{0.25in}
\begin{array}{rrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
2y&+&4z&=&10 \\
2y&+&4(1)&=&10 \\
&-&4&&-4 \\
\midrule
&&2y&=&6 \\
&&y&=&3 \\ \\
-2x&+&z&=&-3 \\
-2x&+&1&=&-3 \\
&-&1&&-1 \\
\midrule
&&-2x&=&-4 \\
&&x&=&2 \\
\end{array}
\end{array}\)
\((2,3,1)\) - \(36+\{\cancel{-2x-\left[6x-3(5-2x)\right]\}^0}1+6x^3\)
\(36+1+6x^3\Rightarrow 6x^3+37\) - \(6a^2b(a^2-9)\)
\(6a^4b-54a^2b\) - \(\begin{array}{rrrrrlrrrr}
\\ \\ \\ \\ \\ \\
&x^2&+&3x&+&5&&&& \\
\times &x^2&+&3x&+&5&&&& \\
\midrule
&x^4&+&3x^3&+&5x^2&&&& \\
&&&3x^3&+&9x^2&+&15x&& \\
+&&&&&5x^2&+&15x&+&25 \\
\midrule
&x^4&+&6x^3&+&19x^2&+&30x&+&25
\end{array}\) - \(\polylongdiv{2x^4+x^3+4x^2-4x-5}{2x+1}\)
- \(x^2-x+18x-18\)
\(x(x-1)+18(x-1)\)
\((x-1)(x+18)\) - \(2(a^2-2ab-15b^2)\)
\(2(a^2-5ab+3ab-15b^2)\)
\(2\left[a(a-5b)+3b(a-5b)\right]\)
\(2(a-5b)(a+3b)\) - \((2x)^3-y^3\)
\((2x-y)(4x^2+2xy+y^2)\) - \((4y^2-x^2)(4y^2+x^2)\)
\((2y-x)(2y+x)(4y^2+x^2)\) - \(\phantom{1}\)
\(B+S=30\Rightarrow B=30-S \\ \)
\(\begin{array}{rrrrrrr}
B&-&10&=&4(S&-&10) \\
30-S&-&10&=&4S&-&40 \\
+S&+&40&&+S&+&40 \\
\midrule
&&60&=&5S&& \\ \\
&&S&=&\dfrac{60}{5}&=&12 \\ \\
&&\therefore B&=&30&-&S \\
&&B&=&30&-&12 \\
&&B&=&18&&
\end{array}\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&(D&+&N&=&\phantom{1}18)(-1) \\
&(10D&+&5N&=&120)(\div 5) \\ \\
&-D&-&N&=&-18 \\
+&2D&+&N&=&\phantom{-}24 \\
\midrule
&&&D&=&6 \\ \\
\therefore &D&+&N&=&18 \\
&6&+&N&=&18 \\
&-6&&&&-6 \\
\midrule
&&&N&=&12
\end{array}\) - \(\phantom{1}\)
\(\text{if }x=5\%, \text{ then }10-x=30\% \\ \)
\(\begin{array}{rrrrcrl}
5x&+&30(10&-&x)&=&25(10) \\
5x&+&300&-&30x&=&\phantom{-}250 \\
&-&300&&&&-300 \\
\midrule
&&&&-25x&=&-50 \\ \\
&&&&x&=&\dfrac{-50}{-25}\text{ or 2 L of 5\%} \\ \\
&&10&-&x&=&\text{8 L of 30\%}
\end{array}\)