"

Midterm 2: Version B Answer Key

[latexpage]

  1. \(x+y=5\)
    \(x\) \(y\)
    5 0
    0 5
    3 2
    \(2x-y=1\)
    \(x\) \(y\)
    1 1
    0 −1
    −1 −3

    Graph with lines intersecting at (2,3)

  2. \(\begin{array}{ll}
    \begin{array}{rrrrrrr}
    \\ \\ \\ \\
    4(4y&+&2)&+&3y&=&8 \\
    16y&+&8&+&3y&=&8 \\
    &-&8&&&&-8 \\
    \midrule
    &&&&19y&=&0 \\
    &&&&y&=&0
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    \\ \\
    x&=&4y&+&2 \\
    x&=&\cancel{4y}0&+&2 \\
    x&=&2&&
    \end{array}
    \end{array}\)
    \((2,0)\)
  3. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &5x&-&3y&=&2 \\
    &(3x&+&y&=&4)(3) \\ \\
    &5x&-&3y&=&\phantom{1}2 \\
    +&9x&+&3y&=&12 \\
    \midrule
    &&&14x&=&14 \\
    &&&x&=&1 \\ \\
    &\therefore 3(1)&+&y&=&4 \\
    &3&+&y&=&4 \\
    &&&y&=&1
    \end{array}\)
  4. \(\begin{array}{ll}
    \begin{array}{rrrrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&&(x&-&2z&=&-7)(-1) \\ \\
    &x&+&y&+&z&=&3 \\
    +&-x&&&+&2z&=&7 \\
    \midrule
    &&&y&+&3z&=&10 \\
    &&&(-2y&+&4z&=&20)(\div 2) \\
    &&&&&\Downarrow&& \\
    &&&y&+&3z&=&10 \\
    &&+&-y&+&2z&=&10 \\
    \midrule
    &&&&&5z&=&20 \\
    &&&&&z&=&4 \\
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    x&-&2z&=&-7 \\
    x&-&2(4)&=&-7 \\
    x&-&8&=&-7 \\
    &+&8&&+8 \\
    \midrule
    &&x&=&1 \\ \\
    y&+&3z&=&10 \\
    y&+&3(4)&=&10 \\
    y&+&12&=&10 \\
    &-&12&&-12 \\
    \midrule
    &&y&=&-2 \\
    \end{array}
    \end{array}\)
    \((1,-2,4)\)
  5. \(5-3\left[4x-2\cancel{(6x-5)^0}1-(7-2x)\right]\)
    \(5-3\left[4x-2(1)-(7-2x)\right]\)
    \(5-3\left[6x-9\right]\)
    \(5-18x+27\Rightarrow -18x+32\)
  6. \(\begin{array}{rrrlrl}
    \\ \\ \\ \\ \\ \\ \\
    &a&+&3&& \\
    \times &a&+&3&& \\
    \midrule
    &a^2&+&3a&& \\
    +&&&3a&+&9 \\
    \midrule
    &a^2&+&6a&+&9 \\
    \times&&&&&3a^2 \\
    \midrule
    &3a^4&+&18a^3&+&27a^2
    \end{array}\)
  7. \(\begin{array}{rrrlrrrrrr}
    \\ \\ \\ \\ \\ \\
    &x^2&+&x&+&5\phantom{x^2}&&&& \\
    \times&x^2&+&x&-&5\phantom{x^2}&&&& \\
    \midrule
    &x^4&+&x^3&+&5x^2&&&& \\
    &&&x^3&+&x^2&+&5x&& \\
    +&&&&&-5x^2&-&5x&-&25 \\
    \midrule
    &x^4&+&2x^3&+&x^2&-&25&&
    \end{array}\)
  8. \((x^{4n-3n}x^{-6})^{-1}\)
    \((x^nx^{-6})^{-1}\)
    \(x^{-n}x^6\text{ or }\dfrac{x^6}{x^n}\)
  9. \(2a(7xy-3z)-1(7xy-3z)\)
    \((7xy-3z)(2a-1)\)
  10. \(a^2-3ab+5ab-15b^2\)
    \(a(a-3b)+5b(a-3b)\)
    \((a-3b)(a+5b)\)
  11. \(2x^2(x+4)-1(x+4)\)
    \((x+4)(2x^2-1)\)
  12. \((3x)^3+(2y)^3\)
    \((3x+2y)(9x^2-6xy+4y^2)\)
  13. \(\phantom{1}\)
    \(F+D=38\Rightarrow F=38-D \\ \)
    \(\begin{array}{rrrrrrr}
    (F&+&6)&=&4(D&+&6) \\
    38-D&+&6\phantom{)}&=&4D&+&24 \\
    -24+D&&&&+D&-&24 \\
    \midrule
    &&20&=&5D&& \\ \\
    &&D&=&\dfrac{20}{5}&=&4 \\ \\
    &&\therefore F&=&38&-&D \\
    &&F&=&38&-&4 \\
    &&F&=&34&&
    \end{array}\)
  14. \(\phantom{1}\)
    \(A+B=90\Rightarrow B=90-A \\ \)
    \(\begin{array}{rrrrrrl}
    3A&+&5(90&-&A)&=&\phantom{-}370 \\
    3A&+&450&-&5A&=&\phantom{-}370 \\
    &-&450&&&&-450 \\
    \midrule
    &&&&-2A&=&-80 \\ \\
    &&&&A&=&\dfrac{-80}{-2}\text{ or }40\text{ kg} \\ \\
    &&&&\therefore B&=&90-A \\
    &&&&B&=&90-40 \\
    &&&&B&=&50\text{ kg}
    \end{array}\)
  15. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    10x&+&25(40)&=&15(x&+&40) \\ \\
    10x&+&1000&=&15x&+&600 \\
    -10x&-&600&&-10x&-&600 \\
    \midrule
    &&400&=&5x&& \\ \\
    &&x&=&\dfrac{400}{5}&=&80
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.