"

Midterm 2: Version A Answer Key

[latexpage]

  1. \(x+2y=-5\)
    \(x\) \(y\)
    0 \(-\dfrac{5}{2}\)
    −5 0
    \(x-y=-2\)
    \(x\) \(y\)
    0 2
    −2 0

    Bar graph with lines intersecting at (-3,-1)

  2. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrrrrl}
    &(4x&-&3y&=&13)(2) \\
    &(5x&-&2y&=&\phantom{1}4)(-3) \\ \\
    &8x&-&6y&=&\phantom{-}26 \\
    +&-15x&+&6y&=&-12 \\
    \midrule
    &&&-7x&=&\phantom{-}14 \\ \\
    &&&x&=&\dfrac{14}{-7}\text{ or }-2
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrcrl}
    \\
    5x&-&2y&=&\phantom{+1}4 \\
    5(-2)&-&2y&=&\phantom{+1}4 \\
    -10&-&2y&=&\phantom{+1}4 \\
    +10&&&&+10 \\
    \midrule
    &&-2y&=&\phantom{+}14 \\ \\
    &&y&=&\dfrac{14}{-2}\text{ or }-7
    \end{array}
    \end{array}\)
    \((-2,-7)\)
  3. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &x&-&2y&=&-5 \\
    &(2x&+&y&=&\phantom{-}5)(2) \\ \\
    &x&-&2y&=&-5 \\
    +&4x&+&2y&=&10 \\
    \midrule
    &&&5x&=&5 \\
    &&&x&=&1 \\ \\
    \therefore &2(1)&+&y&=&\phantom{-}5 \\
    &-2&&&&-2 \\
    \midrule
    &&&y&=&\phantom{-}3
    \end{array}\)
  4. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrrrrrrl}
    \\ \\ \\ \\ \\ \\
    &(x&+&y&+&2z&=&0)(-2) \\ \\
    &-2x&-&2y&-&4z&=&0 \\
    +&2x&&&+&z&=&1 \\
    \midrule
    &&&-2y&-&3z&=&1 \\ \\
    &&&(-2y&-&3z&=&1)(3) \\
    &&&(3y&+&4z&=&0)(2) \\ \\
    &&&-6y&-&9z&=&3 \\
    &&+&6y&+&8z&=&0 \\
    \midrule
    &&&&&-z&=&3 \\
    &&&&&z&=&-3 \\
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrcrl}
    \\ \\
    3y&+&4z&=&0 \\
    3y&+&4(-3)&=&0 \\
    3y&-&12&=&0 \\
    &&3y&=&12 \\
    &&y&=&4 \\ \\
    2x&+&z&=&1 \\
    2x&+&(-3)&=&1 \\
    &&2x&=&4 \\
    &&x&=&2 \\
    \end{array}
    \end{array}\)
    \((2,4,-3)\)
  5. \(28-\{5x-\cancel{\left[6x-3(5-2x)\right]^0}1\}+5x^2\)
    \(28-\{5x-1\}+5x^2\)
    \(28-5x+1+5x^2\)
    \(5x^2-5x+29\)
  6. \(\begin{array}{rrrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    &a&-&3&& \\
    \times &a&-&3&& \\
    \midrule
    &a^2&-&3a&& \\
    +&&-&3a&+&9 \\
    \midrule
    &a^2&-&6a&+&9 \\ \\
    &a^2&-&6a&+&9 \\
    \times&&&&&4a^2 \\
    \midrule
    &4a^4&-&24a^3&+&36a^2 \\
    \end{array}\)
  7. \(\begin{array}{rrrrrlrrrr}
    \\ \\ \\ \\ \\ \\
    &x^2&+&2x&+&3&&&& \\
    \times&x^2&+&2x&+&3&&&& \\
    \midrule
    &x^4&+&2x^3&+&3x^2&&&& \\
    &&&2x^3&+&4x^2&+&6x&& \\
    +&&&&&3x^2&+&6x&+&9 \\
    \midrule
    &x^4&+&4x^3&+&10x^2&+&12x&+&9
    \end{array}\)
  8. \(\polylongdiv{2x^3-7x^2+15}{x-2}\)
  9. \(a(2b+3c)-2(2b+3c)\)
    \((2b+3c)(a-2)\)
  10. \(a^2-5ab+3ab-15b^2\)
    \(a(a-5b)+3b(a-5b)\)
    \((a-5b)(a+3b)\)
  11. \(x^2(x+1)-9(x+1)\)
    \((x^2-9)(x+1)\)
    \((x+3)(x-3)(x+1)\)
  12. \((x)^3-(4y)^3\)
    \((x-4y)(x^2+4xy+16y^2)\)
  13. \(\phantom{1}\)
    \(B+S=35\Rightarrow B=35-S \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrrrrrrr}
    &B&-&10&=&2(S&-&10) \\
    &35-S&-&10&=&2S&-&20 \\
    &25&-&S&=&2S&-&20 \\
    +&20&+&S&&S&+&20 \\
    \midrule
    &&&45&=&3S&&
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    S&=&\dfrac{45}{3}\text{ or }15 \\ \\
    \therefore B&=&35-S \\
    B&=&35-15 \\
    B&=&20 \\
    \end{array}
    \end{array}\)
  14. \(\phantom{1}\)
    \(D+Q=20\Rightarrow Q=20-D \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrlrr}
    10D&+&25Q&=&275 \\
    10D&+&25(20-D)&=&275 \\
    10D&+&500-25D&=&275 \\
    &-&500&&-500 \\
    \midrule
    &&\phantom{500}-15D&=&-225
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    D&=&\dfrac{-225}{-15}\text{ or }15 \\ \\
    \therefore Q&=&20-D \\
    Q&=&20-15 \\
    Q&=&5 \\
    \end{array}
    \end{array}\)
  15. \(\phantom{1}\)
    \(A+B=50\Rightarrow A=50-B \\ \)
    \(\begin{array}{rrrrrrl}
    (3.95A&+&3.70(50&-&A)&=&191.25)(100) \\ \\
    395A&+&370(50&-&A)&=&19125 \\
    395A&+&18500&-&370A&=&19125 \\
    &-&18500&&&&-18500 \\
    \midrule
    &&&&25A&=&625 \\ \\
    &&&&A&=&\dfrac{625}{25}\text{ or 25 kg} \\ \\
    &&&&B&=&50-25 \\
    &&&&B&=&25 \text{ kg} \\
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.