"

Midterm 1: Version E Answer Key

  1. \(\phantom{1}\)
    1. −9
    2. 9
    3. −9
    4. 10
    5. −3
  2. \(\begin{array}{rrrrrrlrrrr}
    \\ \\ \\ \\ \\
    2x&-&8&+&18&=&-12&+&4x&+&12 \\
    -2x&&&&&&&-&2x&& \\
    \hline
    &&&&\dfrac{10}{2}&=&\dfrac{2x}{2}&&&& \\ \\
    &&&&x&=&5&&&&
    \end{array}\)
  3. \(\phantom{1}\)
    \(\left(\dfrac{1}{R}-\dfrac{1}{r_1}=\dfrac{1}{r_2}\right)(Rr_1r_2) \\ \)
    \(\begin{array}{rrrrlrr}
    r_1r_2&-&Rr_2&=&\phantom{-}Rr_1&& \\
    -Rr_1&+&Rr_2&&-Rr_1&+&Rr_2 \\
    \hline
    r_1r_2&-&Rr_1&=&Rr_2&& \\
    r_1(r_2&-&R)&=&Rr_2&& \\ \\
    &&r_1&=&\dfrac{Rr_2}{r_2-R}&&
    \end{array}\)
  4. \(\phantom{1}\)
    \(\left(\dfrac{x}{12}-\dfrac{x-4}{3}=\dfrac{2}{3} \right)(12) \\ \)
    \(\begin{array}{rrcrrrl}
    x&-&4(x&-&4)&=&4(2) \\
    x&-&4x&+&16&=&8 \\
    &&&-&16&&-16 \\
    \hline
    &&&&\dfrac{-3x}{-3}&=&\dfrac{-8}{-3} \\ \\
    &&&&x&=&\dfrac{8}{3}
    \end{array}\)
  5. \(y=-6\)
    -4 over and -6 down
  6. \(\begin{array}{ll}
    \\ \\ \\
    \begin{array}{rrl}
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    \dfrac{2}{5}&=&\dfrac{y-1}{x--1}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrlrr}
    \\ \\ \\
    &&2(x&+&1)&=&\phantom{-}5(y&-&1) \\
    &&2x&+&2&=&\phantom{-}5y&-&5 \\
    &-&5y&+&5&&-5y&+&5 \\
    \hline
    2x&-&5y&+&7&=&0&& \\ \\
    &&&&y&=&\dfrac{2}{5}x&+&\dfrac{7}{5}
    \end{array}
    \end{array}\)
  7. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrl}
    &&\textbf{1st slope:} \\ \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    m&=&\dfrac{5--1}{2-0} \\ \\
    m&=&\dfrac{6}{2} \\ \\
    m&=&3
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    \\ \\ \\
    &&\textbf{Now:} \\ \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    3&=&\dfrac{y--1}{x-0} \\ \\
    3x&=&y+1 \\ \\
    3x-y-1&=&0 \\ \\
    \therefore 0&=&3x-y-1 \\
    y&=&3x-1
    \end{array}
    \end{array}\)
  8. Line passes through (0,1)
  9. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    -20&\le &8x&-&4&\le &28 \\
    +4&&&+&4&&+4 \\
    \hline
    \dfrac{-16}{8}&\le &&\dfrac{8x}{8}&&\le &\dfrac{32}{8} \\ \\
    -2&\le &&x&&\le &4
    \end{array}\)
    -2 < or equal to x < equal to 4
  10. \(\phantom{1}\)
    \(\left(-2\le \dfrac{2x+2}{6} \le 2 \right)(6) \\ \)
    \(\begin{array}{rrrrrrr}
    -12&\le &2x&+&2&\le &12 \\
    -2&&&-&2&&-2 \\
    \hline
    \dfrac{-14}{2}&\le &&\dfrac{2x}{2}&&\le &\dfrac{10}{2} \\ \\
    -7&\le &&x&&\le &5
    \end{array}\)
    -7 < or equal to x < or equal to 5
  11. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\
    \left(\dfrac{3x-4}{5} < -1 \right)(5) \hspace{0.25in}& \text{or} \hspace{0.25in} \left(1 < \dfrac{3x-4}{5}\right)(5) \\ \\
    \begin{array}{rrrrr}
    3x&-&4&<&-5 \\
    &+&4&&+4 \\
    \hline
    &&3x&<&-1 \\ \\
    &&x&<&-\dfrac{1}{3}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    5&<&3x&-&4 \\
    +4&&&+&4 \\
    \hline
    \dfrac{9}{3}&<&\dfrac{3x}{3}&& \\ \\
    x&>&3&&
    \end{array}
    \end{array}\)
    x > -1 over 3, x < 3
  12. \(3x-2y<12\)
    \(x\) \(y\)
    0 −6
    4 0

    Line on graph passes through (0,-6), (5,0)

  13. \(\phantom{1}\)
    \(x, x+2, x+4 \\ \)
    \(\begin{array}{rrcrrrcrrrl}
    x&+&2(x&+&2)&+&3(x&+&4)&=&\phantom{-}94 \\
    x&+&2x&+&4&+&3x&+&12&=&\phantom{-}94 \\
    &&&&&&6x&+&16&=&\phantom{-}94 \\
    &&&&&&&-&16&&-16 \\
    \hline
    &&&&&&&&\dfrac{6x}{6}&=&\dfrac{78}{6} \\ \\
    &&&&&&&&x&=&13
    \end{array}\)
    \(\phantom{1}\)
    numbers are 13, 15, 17

  14. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    3x+x&=&800\text{ cm} \\
    4x&=&800\text{ cm} \\
    x&=&\dfrac{800\text{ cm}}{4}\text{ or }200\text{ cm} \\ \\
    3x&=&600\text{ cm}
    \end{array}\)
  15. \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{km}{n^2} \\ \\
    &&\underline{\text{1st}} \\
    y&=&12 \\
    k&=&\text{find} \\
    m&=&3 \\
    n&=&4 \\ \\
    12&=&\dfrac{k(3)}{(4)^2} \\ \\
    k&=&\dfrac{12\cdot (4)^2}{3} \\ \\
    k&=&64
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&\underline{\text{2nd}} \\
    y&=&\text{find} \\
    k&=&64 \\
    m&=&3 \\
    n&=&-3 \\ \\
    y&=&\dfrac{(64)(3)}{(-3)^2} \\ \\
    y&=&\dfrac{64}{3}
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.