"

Midterm 1: Version D Answer Key

  1. \(\begin{array}{l}
    \\ \\ \\ \\
    3(4)-\sqrt{4^2-4(4)(1)} \\ \\
    12-\sqrt{16-16} \\ \\
    12
    \end{array}\)
  2. \(\begin{array}{rrrrrrrrrrr}
    \\ \\ \\ \\ \\
    2x&-&8&+&8&=&-6&+&3x&+&9 \\
    &&&&2x&=&3x&+&3&& \\
    &&&&-3x&&-3x&&&& \\
    \hline
    &&&&-x&=&3&&&& \\
    &&&&x&=&-3&&&&
    \end{array}\)
  3. \(\phantom{1}\)
    \(\left(\dfrac{1}{R}=\dfrac{1}{r_1}+\dfrac{1}{r_2}\right)(Rr_1r_2) \\ \)
    \(\begin{array}{rrrrlrr}
    &&r_1r_2&=&\phantom{-}Rr_2&+&Rr_1 \\
    &&-Rr_2&&-Rr_2&& \\
    \hline
    r_1r_2&-&Rr_2&=&Rr_1&& \\
    r_2(r_1&-&R)&=&Rr_1&& \\ \\
    &&r_2&=&\dfrac{Rr_1}{r_1-R}&&
    \end{array}\)
  4. \(\phantom{1}\)
    \(\left(\dfrac{x}{15}-\dfrac{x-3}{3}=\dfrac{1}{3}\right)(15) \\ \)
    \(\begin{array}{rrcrrrr}
    x&-&5(x&-&3)&=&5 \\
    x&-&5x&+&15&=&5 \\
    &&&-&15&&-15 \\
    \hline
    &&&&\dfrac{-4x}{-4}&=&\dfrac{-10}{-4} \\ \\
    &&&&x&=&\dfrac{5}{2}
    \end{array}\)
  5. \(y=5\)
    point at (-2,5) y=5
  6. \(\begin{array}{ll}
    \\ \\ \\
    \begin{array}{rrl}
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    \dfrac{2}{3}&=&\dfrac{y-4}{x--2}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrlrr}
    \\ \\ \\
    &&2(x&+&2)&=&\phantom{-}3(y&-&4) \\
    &&2x&+&4&=&\phantom{-}3y&-&12 \\
    &-&3y&+&12&&-3y&+&12 \\
    \hline
    2x&-&3y&+&16&=&0&& \\ \\
    &&&&y&=&\dfrac{2}{3}x&+&\dfrac{16}{3}
    \end{array}
    \end{array}\)
  7. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&\textbf{1st slope:} \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    m&=&\dfrac{-9--7}{8-12} \\ \\
    m&=&\dfrac{-2}{-4} \\ \\
    m&=&\dfrac{1}{2} \\ \\
    &&\textbf{Now:} \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    \dfrac{1}{2}&=&\dfrac{y--9}{x-8}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrrrr}
    &&x&-&8&=&2(y&+&9) \\
    &&x&-&8&=&2y&+&18 \\
    &-&2y&-&18&&-2y&-&18 \\
    \hline
    x&-&2y&-&26&=&0&&
    \end{array}
    \end{array}\)
  8. Line on graph passes through (0,-2) and (3,0)
  9. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    -27&\le &6x&-&9&\le &3 \\
    +9&&&+&9&&+9 \\
    \hline
    \dfrac{-18}{6}&\le &&\dfrac{6x}{6}&&\le &\dfrac{12}{6} \\ \\
    -3&\le &&x&&\le &2
    \end{array}\)
    -3 , or equal to x < or equal to 2
  10. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{2x+2}{6}=2& \hspace{0.75in} \dfrac{2x+2}{6}=-2 \\ \\
    \begin{array}{rrrrl}
    2x&+&2&=&2\cdot 6 \\
    2x&+&2&=&12 \\
    &-&2&&-2 \\
    \hline
    &&\dfrac{2x}{2}&=&\dfrac{10}{2} \\ \\
    &&x&=&5
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrl}
    2x&+&2&=&-2\cdot 6 \\
    2x&+&2&=&-12 \\
    &-&2&&-2 \\
    \hline
    &&\dfrac{2x}{2}&=&\dfrac{-14}{2} \\ \\
    &&x&=&-7
    \end{array}
    \end{array}\)
    x=5, x=-7
  11. \(\begin{array}{rrrrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    2x&-&1&<&-6&\hspace{0.25in}&6&<&2x&-&1 \\
    &+&1&&+1&&+1&&&+&1 \\
    \hline
    &&\dfrac{2x}{2}&<&\dfrac{-5}{2}&&\dfrac{7}{2}&<&\dfrac{2x}{2}&& \\ \\
    &&x&<&-\dfrac{5}{2}&&x&>&\dfrac{7}{2}&&
    \end{array}\)
    INSERT IMAGE
  12. \(y=|2x|-1\)
    \(x\) \(y\)
    3 5
    2 3
    1 1
    0 −1
    −1 1
    −2 3
    −3 5

    V line with point at (0,-1)

  13. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrl}
    A_1&=&A_2 \\
    A_3&=&2A_1-10^{\circ} \\ \\
    A_1+A_2+A_3&=&180^{\circ} \\
    A_1+A_1+2A_1-10^{\circ}&=&180^{\circ} \\
    +10^{\circ}&&+10^{\circ} \\
    \hline
    \dfrac{4A_1}{4}&=&\dfrac{190^{\circ}}{4}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    A_1&=&47.5^{\circ} \\ \\
    A_2&=&47.5^{\circ} \\ \\
    A_3&=&2A_1-10^{\circ} \\
    A_3&=&2(47.5^{\circ})-10^{\circ} \\
    A_3&=&95^{\circ}-10^{\circ} \\
    A_3&=&85^{\circ}
    \end{array}
    \end{array}\)
  14. \(\phantom{1}\)
    \(x, x+2 \\ \)
    \(\begin{array}{rrrrrrrrr}
    x&+&x&+&2&=&x&-&20 \\
    &&2x&+&2&=&x&-&20 \\
    &&-x&-&2&&-x&-&2 \\
    \hline
    &&&&x&=&-22&&
    \end{array}\)
    \(\phantom{1}\)
    numbers are −22, −20
  15. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrl}
    y&=&\dfrac{kmn^2}{d} \\ \\
    &&\textbf{1st data} \\
    y&=&16 \\
    k&=&\text{find 1st} \\
    m&=&3 \\
    n&=&4 \\
    d&=&6 \\ \\
    y&=&\dfrac{kmn^2}{d} \\ \\
    16&=&\dfrac{k(3)(4)^2}{6} \\ \\
    k&=&\dfrac{16\cdot 6}{3\cdot (4)^2} \\ \\
    k&=&2
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    &&\textbf{2nd data} \\
    y&=&\text{find 2nd} \\
    k&=&2 \\
    m&=&-2 \\
    n&=&4 \\
    d&=&8 \\ \\
    y&=&\dfrac{kmn^2}{d} \\ \\
    y&=&\dfrac{(2)(-2)(4)^2}{8} \\ \\
    y&=&-8
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.