"

Midterm 1: Version C Answer Key

  1. \(\begin{array}{l}
    \\ \\ \\ \\
    -(4)-\sqrt{4^2-4(4)1} \\ \\
    -4-\sqrt{16-16} \\ \\
    -4
    \end{array}\)
  2. \(\begin{array}{rrrrrrrcrrrr}
    \\ \\ \\ \\ \\
    &2x&-&8&+&8&=&3&-&7x&-&21 \\
    +&7x&&&&&&&+&7x&& \\
    \hline
    &&&&&\dfrac{9x}{9}&=&\dfrac{-18}{9}&&&& \\ \\
    &&&&&x&=&-2&&&&
    \end{array}\)
  3. \(\phantom{1}\)
    \(\left(A=\dfrac{h}{B+b}\right)(B+b) \\ \)
    \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    \dfrac{A}{A}(B&+&b)&=&\dfrac{h}{A}&& \\ \\
    B&+&b&=&\dfrac{h}{A}&& \\
    &-&b&&&-&b \\
    \hline
    &&B&=&\dfrac{h}{A}&-&b
    \end{array}\)
  4. \(\phantom{1}\)
    \(\left(\dfrac{x}{15}-\dfrac{x-3}{3}=\dfrac{1}{5}\right)(15) \\ \)
    \(\begin{array}{rrcrrrl}
    x&-&5(x&-&3)&=&3(1) \\
    x&-&5x&+&15&=&\phantom{-1}3 \\
    &&&-&15&&-15 \\
    \hline
    &&&&\dfrac{-4x}{-4}&=&\dfrac{-12}{-4} \\ \\
    &&&&x&=&3
    \end{array}\)
  5. \(x=-2\)
    Coordinates are (-2.-2) x =-2
  6. \(\begin{array}{rrl}
    \\ \\ \\ \\
    y&=&mx+6 \\
    \therefore y&=&\dfrac{2}{3}x-3 \\ \\
    \text{or } 3y&=&2x-9 \\
    0&=&2x-3y-9 \\
    \end{array}\)
  7. \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&\textbf{1st slope} \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    m&=&\dfrac{4--6}{-1-14} \\ \\
    m&=&\dfrac{10}{-15} \\ \\
    m&=&-\dfrac{2}{3} \\ \\
    &&\textbf{Now:} \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    -\dfrac{2}{3}&=&\dfrac{y-4}{x--1}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrrlrr}
    \\ \\ \\ \\ \\
    &&&-2(x&+&1)&=&\phantom{-}3(y&-&4) \\
    &&&-2x&-&2&=&\phantom{-}3y&-&12 \\
    +&&&-3y&+&12&&-3y&+&12 \\
    \hline
    &-2x&-&3y&+&10&=&0&& \\
    \text{or}&2x&+&3y&-&10&=&0&& \\ \\
    &&&&&y&=&-\dfrac{2}{3}x&+&\dfrac{10}{3}
    \end{array}
    \end{array}\)
  8. \(2x-y=-2\)
    \(x\) \(y\)
    0 2
    −1 0
    −2 −2

    Line passes through (-2,2), (-1,0), (0,2)

  9. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    0&\le &2x&+&4&<&8 \\
    -4&&&-4&&&-4 \\
    \hline
    \dfrac{-4}{2}&\le &&\dfrac{2x}{2}&&<&\dfrac{4}{2} \\ \\
    -2&\le &&x&&<&2
    \end{array}\)
    -2 is less than or equal to x which is less than 2
  10. \(\begin{array}{rrrrrrrrrrr}
    \\ \\
    y&-&1&>&3&\hspace{0.25in} \text{or}\hspace{0.25in}&y&-&1&<&-3 \\
    &+&1&&+1&&&+&1&&+1 \\
    \hline
    &&y&>&4&\hspace{0.25in} \text{or}\hspace{0.25in}&&&y&<&-2
    \end{array}\)
    y <4 or y >2
  11. \(\begin{array}{rrrrrrrrrrr}
    \\ \\ \\
    2x&-&3&<&-5&\hspace{0.5in}&2x&-&3&>&5 \\
    &+&3&&+3&\hspace{0.5in}&&+&3&&+3 \\
    \hline
    &&2x&<&-2&\hspace{0.5in}&&&2x&>&8 \\
    &&x&<&-1&\hspace{0.5in}&&&x&>&4
    \end{array}\)
    x > -1, x < 4
  12. \(y=|x|-3\)
    \(x\) \(y\)
    3 0
    2 −1
    1 −2
    0 −3
    −1 −2
    −2 −1
    −3 0

    Graph with line intersecting at (-3,0), (-2,-1), (-1,-2), (0,-3) (1,-2), (2,-1), (3,0)

  13. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrrrl}
    5L&+&3S&=&49 \\
    4L&-&2S&=&26 \\ \\
    \dfrac{4L}{2}&-&\dfrac{2S}{2}&=&\dfrac{26}{2} \\ \\
    2L&-&S&=&13 \\ \\
    &\text{or}&S&=&2L-13
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrcrrrl}
    \\ \\ \\
    5L&+&3(2L&-&13)&=&49 \\
    5L&+&6L&-&39&=&49 \\
    &&&+&39&&+39 \\
    \hline
    &&&&\dfrac{11L}{11}&=&\dfrac{88}{11} \\ \\
    &&&&L&=&8 \\ \\
    &&&&\therefore S&=&2L-13 \\
    &&&&S&=&2(8)-13 \\
    &&&&S&=&16-13 \\
    &&&&S&=&3
    \end{array}
    \end{array}\)
  14. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    5x+x&=&42 \\
    6x&=&42 \\
    x&=&\dfrac{42}{6}\text{ or }7 \\ \\
    \therefore 5x&=&5(7)\text{ or }35
    \end{array}\)
  15. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{km}{d^2} \\ \\
    &&\textbf{1st} \\
    y&=&3 \\
    k&=&\text{find 1st} \\
    m&=&2 \\
    d&=&4 \\ \\
    y&=&\dfrac{km}{d^2} \\ \\
    3&=&\dfrac{k(2)}{(4)^2} \\ \\
    3&=&\dfrac{3(4)^2}{2} \\ \\
    k&=&24
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\
    &&\textbf{2nd} \\
    y&=&\text{find} \\
    k&=&24 \\
    m&=&25 \\
    d&=&5 \\ \\
    y&=&\dfrac{km}{d^2} \\ \\
    y&=&\dfrac{(24)(25)}{(5)^2} \\ \\
    y&=&24
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.