"

Midterm 1: Version B Answer Key

  1. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\ \\ \\
    -6-\sqrt{6^2-4(5)(1)} \\ \\
    -6-\sqrt{36-20} \\ \\
    -6-\sqrt{16} \\ \\
    -6-4 \\ \\
    -10
    \end{array}\)
  2. \(\begin{array}{rrrrrrrr}
    \\ \\ \\ \\ \\ \\
    &15x&-&18&=&4[-6&+&3x] \\
    &15x&-&18&=&-24&+&12x \\
    -&12x&+&18&&+18&-&12x \\
    \hline
    &&&\dfrac{3x}{3}&=&\dfrac{-6}{3} && \\ \\
    &&&x&=&-2 &&
    \end{array}\)
  3. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\
    \left(A=\dfrac{h}{B\cdot b}\right)(b) \\ \\
    \left(Ab=\dfrac{h}{B}\right)\div A \\ \\
    \phantom{A}b=\dfrac{h}{BA}
    \end{array}\)
  4. \(\phantom{1}\)
    \(\left(\dfrac{x+3}{5}-\dfrac{x}{2}=\dfrac{5-3x}{10}\right)(10) \\ \)
    \(\begin{array}{rrcrcrrrr}
    2(x&+&3)&-&5(x)&=&5&-&3x \\
    2x&+&6&-&5x&=&5&-&3x \\
    &-&3x&+&6&=&5&-&3x \\
    &+&3x&-&6&&-6&+&3x \\
    \hline
    &&&&0&=&-1&&
    \end{array}\)
    \(\phantom{1}\)
    No solution
  5. \(y=4\)
    -3, 4
  6. \(\begin{array}{ll}
    \\ \\ \\
    \begin{array}{rrl}
    \text{slope}&=&\dfrac{\Delta y}{\Delta x} \\ \\
    \dfrac{1}{3}&=&\dfrac{y-4}{x--1}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrlrr}
    \\ \\ \\ \\ \\
    &&1(x&+&1)&=&3(y&-&4) \\
    &&x&+&1&=&3y&-&12 \\
    &&&-&1&&&-&1 \\
    \hline
    &&&&x&=&3y&-&13 \\ \\
    x&-&3y&+&13&=&0&& \\ \\
    &&&&y&=&\dfrac{1}{3}x&+&\dfrac{13}{3}
    \end{array}
    \end{array}\)
  7. \(\phantom{1}\)
    \(\text{1st slope }\dots\text{ } m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{5-4}{-3-0}\Rightarrow -\dfrac{1}{3} \\ \)
    \(\text{now }\dots\text{ } m=\dfrac{\Delta y}{\Delta x}\Rightarrow -\dfrac{1}{3}\Rightarrow \dfrac{y-4}{x-0} \\ \)
    \(\begin{array}{rrl}
    -1(x)&=&3(y-4) \\
    -x&=&3y-12 \\ \\
    x+3y-12&=&0 \\
    y&=&-\dfrac{1}{3}x+4 \\
    \end{array}\)
  8. Line on graph passes through (0,-2), (3,-1), (6,0)
  9. \(\begin{array}{rrrrrrrrrrr}
    \\ \\ \\ \\
    6x&-&12&+&8x&>&15&-&20x&+&7 \\
    &+&12&+&20x&&&+&20x&+&15 \\
    &&&+&6x&&&&&+&12 \\
    \hline
    &&&&34x&>&34&&&& \\
    &&&&x&>&1&&&&
    \end{array}\)
    x > 1
  10. \(\begin{array}{rrrcrrr}
    \\ \\ \\ \\ \\
    -3&\le &2x&+&3&<&9 \\
    -3&&&-&3&&-3 \\
    \hline
    \dfrac{-6}{2}&\le &&\dfrac{2x}{2}&&<&\dfrac{6}{2} \\ \\
    -3&\le &&x&&<&3
    \end{array}\)
    -3 is less than or equal to x is less or greater than 3
  11. \(\phantom{1}\)
    \(\left(-2<\dfrac{3x+2}{5}<2\right)(5) \\ \)
    \(\begin{array}{rrrrrrr}
    -10&<&3x&+&2&<&10 \\
    -2&&&-&2&&-2 \\
    \hline
    \dfrac{-12}{3}&<&&\dfrac{3x}{3}&&<&\dfrac{8}{3} \\ \\
    -4&<&&x&&<&\dfrac{8}{3}
    \end{array}\)
    -4 less than or equal to x which is less than 2.5
  12. \(5x+2y=10\)
    \(x\) \(y\)
    2 0
    0 5
    −2 10
    4 −5

    Line on graph passes through (0,5), (2,0), (4,-5)

  13. \(\phantom{1}\)
    \(x, x+2 \\ \)
    \(\begin{array}{rrrrrrrrr}
    x&+&(x&+&2)&=&5x&-&16 \\
    &&2x&+&2&=&5x&-&16 \\
    &+&-5x&-&2&&-5x&-&2 \\
    \hline
    &&&&\dfrac{-3x}{-3}&=&\dfrac{-18}{-3}&& \\ \\
    &&&&x&=&6&& \\
    \end{array}\)
    \(\phantom{1}\)
    numbers are 6, 8
  14. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    4x+x&=&40\text{ cm} \\
    5x&=&40\text{ cm} \\
    x&=&\dfrac{40\text{ cm}}{5}\text{ or }8\text{ cm} \\ \\
    \therefore 4x&=&4(8)\text{ or }32\text{ cm}
    \end{array}\)
  15. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \\ \\ \\ \\ \\
    &&\underline{\text{1st}} \\ \\
    P&=&\dfrac{kT}{V} \\ \\
    &&\underline{\text{2nd}} \\ \\
    &&\textbf{1st data} \\
    P&=&100 \\
    k&=&\text{find 1st} \\
    T&=&200 \\
    V&=&500 \\ \\
    P&=&\dfrac{kT}{V} \\ \\
    100&=&\dfrac{k(200)}{500} \\ \\
    k&=&\dfrac{\cancel{100}(500)}{\cancel{200}2} \\ \\
    k&=&250
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&\textbf{2nd data} \\
    P&=&\text{find 2nd} \\
    k&=&250 \\
    T&=&100 \\
    V&=&500 \\ \\
    P&=&\dfrac{kT}{V} \\ \\
    P&=&\dfrac{(250)(100)}{500} \\ \\
    P&=&50
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.