"

Midterm 1: Version A Answer Key

  1. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\ \\ \\
    -(-3)-\sqrt{(-3)^2-4(4)(-1)} \\ \\
    3-\sqrt{9+16} \\ \\
    3-\sqrt{25} \\ \\
    3-5 \\ \\
    -2
    \end{array}\)
  2. \(\begin{array}{rrrrrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    &2x&-&10&-&85&=&3&-&9x&-&54 \\
    +&9x&+&10&+&85&&&+&9x&+&3 \\
    &&&&&&&&&&+&85 \\
    &&&&&&&&&&+&10 \\
    \hline
    &&&&&\dfrac{11x}{11}&=&\dfrac{44}{11}&&&& \\ \\
    &&&&&x&=&4&&&&
    \end{array}\)
  3. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    A(B-b)&=&h \\ \\
    B-b&=&\dfrac{h}{A} \\ \\
    -b&=&\dfrac{h}{A}-B
    \end{array}\)
  4. \(\phantom{1}\)
    \(\left(\dfrac{x+1}{4}-\dfrac{5}{8}=\dfrac{x-1}{8}\right)(8) \\ \)
    \(\begin{array}{rrrrrrrrr}
    2(x&+&1)&-&5&=&x&-&1 \\
    2x&+&2&-&5&=&x&-&1 \\
    -x&-&2&+&5&&-x&+&5 \\
    &&&&&&&-&2 \\
    \hline
    &&&&x&=&2&&
    \end{array}\)
  5. Line passes through (-2,5)
    \(x=-2\)
  6. \(\begin{array}{ll}
    \\ \\ \\
    \begin{array}{rrl}
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    \dfrac{2}{5}&=&\dfrac{y--2}{x--1}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrrrl}
    \\ \\ \\
    &&2(x&+&1)&=&5(y&+&2) \\
    &&2x&+&2&=&5y&+&10 \\
    &&-5y&-&10&&-5y&-&10 \\
    \hline
    2x&-&5y&-&8&=&0&& \\
    &&&&0&=&2x&-&5y-8 \\ \\
    &&&&y&=&\dfrac{2}{5}x&-&\dfrac{8}{5}
    \end{array}
    \end{array}\)
  7. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \text{1st slope} && \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    m&=&\dfrac{4-0}{6--2} \\ \\
    m&=&\dfrac{4}{8}\text{ or }\dfrac{1}{2}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    \\ \\ \\ \\
    \text{Now:} && \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    \dfrac{1}{2}&=&\dfrac{y-0}{x--2} \\ \\
    1(x+2) &=&2(y-0) \\
    x+2&=&2y \\ \\
    \therefore y&=&\dfrac{1}{2}+1 \\ \\
    \text{or }x-2y+2&=&0
    \end{array}
    \end{array}\)
  8. Line passes through (0,-1), (3,1)
  9. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    6x&-&5&-&30x&>&67 \\
    &+&5&&&&+5 \\
    \hline
    &&&&\dfrac{-24x}{-24}&>&\dfrac{72}{-24} \\ \\
    &&&&x&<&-3
    \end{array}\)
    x < -3
  10. \(\begin{array}{rrrcrrr}
    \\ \\ \\ \\ \\
    -10&\le &4x&-&2&\le &14 \\
    +2&&&+&2&&+2 \\
    \hline
    \dfrac{-8}{4}&\le &&\dfrac{4x}{4}&&\le &\dfrac{16}{4} \\ \\
    -2&\le &&x&&\le &4
    \end{array}\)
    x < or equal to -2 or x < equal to 4
  11. \(\begin{array}{ll}
    \begin{array}{rrl}
    \dfrac{3x+2}{5}&=& 2 \\ \\
    3x+2&=&10 \\
    -2&&-2 \\
    \hline
    \dfrac{3x}{3}&=&\dfrac{8}{3} \\ \\
    x&=&\dfrac{8}{3}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    \dfrac{3x+2}{5}&=& -2 \\ \\
    3x+2 &=&-10 \\
    -2&&-2 \\
    \hline
    \dfrac{3x}{3}&=&\dfrac{-12}{3} \\ \\
    x&=&-4
    \end{array}
    \end{array}\)
    x = -4, or x - 8 over 3
  12. \(5x+2y<15\)
    \(x\) \(y\)
    0 7.5
    3 0
    1 5
    5 −5

    Line passes through (1,5), (3,0), (5, -5)

  13. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(5L&+&3S&=&47)(2) \\
    &(4L&-&2S&=&20)(3) \\ \\
    &10L&+&6S&=&94 \\
    +&12L&-&6S&=&60 \\
    \hline
    &&&\dfrac{22L}{22}&=&\dfrac{154}{22} \\ \\
    &&&L&=&7 \\ \\
    \therefore &4L&-&2S&=&\phantom{-}20 \\
    &4(7)&-&2S&=&\phantom{-}20 \\
    &28&-&2S&=&\phantom{-}20 \\
    -&28&&&&-28 \\
    \hline
    &&&\dfrac{-2S}{-2}&=&\dfrac{-8}{-2} \\ \\
    &&&S&=&4
    \end{array}\)
  14. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    36\text{ cm}&=&5x+x \\
    36\text{ cm}&=&6x \\ \\
    x&=&\dfrac{36\text{ cm}}{6} \\ \\
    x&=&6\text{ cm} \\
    5x&=&5(6)=30 \text{ cm}
    \end{array}\)
  15. \[
    \begin{aligned}
    \text{1st:} \quad y &= \frac{k m n}{d^2} \\[2mm]
    \text{2nd:} \quad
    y &= 3 \\
    k &= \text{find} \\
    m &= 2 \\
    n &= 8 \\
    d &= 4 \\
    y &= \frac{k m n}{d^2} \\
    3 &= \frac{k \cdot 2 \cdot 8}{4^2} \\
    k &= \frac{3 \cdot 16}{16} \\
    k &= 3
    \end{aligned}
    \quad\quad
    \begin{aligned}
    \text{3rd:} \quad
    y &= \text{find} \\
    k &= 3 \\
    m &= 15 \\
    n &= 10 \\
    d &= 5 \\
    y &= \frac{k m n}{d^2} \\
    y &= \frac{3 \cdot 15 \cdot 10}{5^2} \\
    y &= 18
    \end{aligned}
    \]

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.