Midterm 3: Version E Answer Key
[latexpage]
- \(\dfrac{\cancel{12}1\cancel{m^3}}{\cancel{5}1\cancel{n^2}}\cdot \dfrac{\cancel{15}\cancel{3}1\cancel{n^3}}{\cancel{36}\cancel{3}1\cancel{m^6}}\cdot \dfrac{\cancel{8}4m^{\cancel{4}}}{\cancel{6}3n^{\cancel{2}}}\Rightarrow \dfrac{4m}{3n}\)
- \(\dfrac{\cancel{x}1\cancel{(x+2)}}{\cancel{(x+2)}\cancel{(x+7)}}\cdot \dfrac{\cancel{2}1\cancel{(x+7)}}{\cancel{2}1x^{\cancel{3}2}}=\dfrac{1}{x^2}\)
- \(\phantom{1}\)
\(\left(\dfrac{x-3}{7}-\dfrac{x-15}{28}=\dfrac{3}{4}\right)(28) \\ \)
\(\begin{array}{rrrrrrrrl}
4(x&-&3)&-&(x&-&15)&=&3(7) \\
4x&-&12&-&x&+&15&=&21 \\
&+&12&&&-&15&&-15+12 \\
\midrule
&&&&&&3x&=&18 \\
&&&&&&x&=&6
\end{array}\) - \(\begin{array}{l}
\dfrac{\left(\dfrac{x^2}{y^2}-36\right)y^3}{\left(\dfrac{x+6y}{y^3}\right)y^3}\Rightarrow \dfrac{x^2y-36y^3}{x+6y}\Rightarrow \dfrac{y(x^2-36y^2)}{x+6y}\Rightarrow \dfrac{y(x-6y)\cancel{(x+6y)}}{\cancel{(x+6y)}} \\ \\
\Rightarrow y(x-6y)
\end{array}\) - \(\begin{array}{l}
\\ \\ \\ \\ \\ \\
\sqrt{x^6\cdot x\cdot y^4\cdot y}+2xy\sqrt{36\cdot x\cdot y^4\cdot y}-\sqrt{x\cdot y^2\cdot y} \\ \\
x^3y^2\sqrt{xy}+2xy\cdot 6y^2\sqrt{xy}-y\sqrt{xy} \\ \\
x^3y^2\sqrt{xy}+12xy^3\sqrt{xy}-y\sqrt{xy} \\ \\
\sqrt{xy}(x^3y^2+12xy^3-y)
\end{array}\) - \(\dfrac{\sqrt{7}}{3-\sqrt{7}}\cdot \dfrac{3+\sqrt{7}}{3+\sqrt{7}}\Rightarrow \dfrac{3\sqrt{7}+7}{9-7}\Rightarrow \dfrac{3\sqrt{7}+7}{2}\)
- \(\left(\dfrac{\cancel{x^0}1y^4}{z^{-12}}\right)^{\frac{1}{4}}\Rightarrow \dfrac{y^{4\cdot \frac{1}{4}}}{z^{-12\cdot \frac{1}{4}}}\Rightarrow \dfrac{y^1}{z^{-3}}\Rightarrow yz^3\)
- \(\phantom{1}\)
\((\sqrt{4x-5})^2=(\sqrt{2x+3})^2 \\ \)
\(\begin{array}{rrrrrrrr}
&4x&-&5&=&2x&+&3 \\
-&2x&+&5&&-2x&+&5 \\
\midrule
&&&2x&=&8&& \\
&&&x&=&4&&
\end{array}\) - \(\phantom{1}\)
- \(\left(\dfrac{x^2}{3}=27\right)(3)\Rightarrow x^2=81 \Rightarrow x=\pm 9\)
- \(\begin{array}{rrl}
\\ \\ \\
27x^2+3x&=&0 \\
3x(9x+1)&=&0 \\
x&=&0, -\dfrac{1}{9}
\end{array}\)
- \(\phantom{1}\)
- \(\begin{array}{rrl}
\\
(x-12)(x+1)&=&0 \\
x&=&12, -1
\end{array}\) - \(\begin{array}{rrl}
\\ \\
x^2+13x+12&=&0 \\
(x+12)(x+1)&=&0 \\
x&=&-1, -12
\end{array}\)
- \(\begin{array}{rrl}
- \(\phantom{1}\)
\(\left(\dfrac{2}{x}=\dfrac{2x}{3x+8}\right)(x)(3x+8) \\ \)
\(\begin{array}{ll}
\begin{array}{rrl}
2(3x+8)&=&2x^2 \\
6x+16&=&2x^2 \\
0&=&2x^2-6x-16 \\
0&=&2(x^2-3x-8)
\end{array}
& \hspace{0.25in}
\begin{array}{l}
\\ \\ \\
\dfrac{-(-3)\pm \sqrt{(-3)^2-4(1)(-8)}}{2(1)} \\ \\
\dfrac{3\pm \sqrt{9+32}}{2} \\ \\
\dfrac{3\pm \sqrt{41}}{2}
\end{array}
\end{array}\) - \(\begin{array}{rrl}
\\ \\
(x^2-64)(x^2+1)&=&0 \\
(x-8)(x+8)(x^2+1)&=&0 \\
x&=&\pm 8
\end{array}\) - \(\begin{array}{rrcrrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&A&=&20&+&P&&&& \\ \\
&&L(L&-&5)&=&20&+&2(L&-&5)&+&2L \\
L^2&-&5L&&&=&20&+&2L&-&10&+&2L \\
&-&4L&-&10&&-10&-&4L&&&& \\
\midrule
L^2&-&9L&-&10&=&0&&&&&& \\
(L&-&10)(L&+&1)&=&0&&&&&& \\
&&&&L&=&10,&\cancel{-1}&&&&& \\ \\
&&&&W&=&L&-&5&&&& \\
&&&&W&=&10&-&5&&&& \\
&&&&W&=&5&&&&&&
\end{array}\) - \(\phantom{1}\)
\(x, x+2, x+4 \\ \)
\(\begin{array}{rrcrrrrrcrr}
&&x(x&+&4)&=&35&+&10(x&+&2) \\
x^2&+&4x&&&=&35&+&10x&+&20 \\
&-&10x&-&55&&-55&-&10x&& \\
\midrule
x^2&-&6x&-&55&=&0&&&& \\
(x&-&11)(x&+&5)&=&0&&&& \\
&&&&x&=&11,&-5&&&
\end{array}\)
\(\phantom{1}\)
\(\text{numbers are }11,13,15\text{ or }-5,-3,-1\) - \(\begin{array}{rrrrrrcrrr}
\\ \\ \\ \\ \\ \\
&&&d_{\text{d}}&=&d_{\text{u}}&+&9&& \\ \\
&3(5&+&r)&=&4(5&-&r)&+&9 \\
&15&+&3r&=&20&-&4r&+&9 \\
-&15&+&4r&&-15&+&4r&& \\
\midrule
&&&7r&=&14&&&& \\
&&&r&=&2&\text{km/h}&&&
\end{array}\)