Midterm 3: Version D Answer Key
[latexpage]
- \(\dfrac{\cancel{15}1\cancel{m^3}}{4\cancel{n^2}}\cdot \dfrac{\cancel{13}1\cancel{n^3}}{\cancel{45}3\cancel{m^6}}\cdot \dfrac{\cancel{3}1m^{\cancel{4}}}{\cancel{39}\cancel{3}1n^{\cancel{2}}}\Rightarrow \dfrac{m}{12n}\)
- \(\dfrac{3x^2-9x}{3x+9}\cdot \dfrac{12x}{x^2+2x-15}\Rightarrow \dfrac{3x\cancel{(x-3)}}{\cancel{3}(x+3)}\cdot \dfrac{\cancel{12}4x}{(x+5)\cancel{(x-3)}}\Rightarrow \dfrac{12x^2}{(x+3)(x+5)}\)
- \(\phantom{1}\)
\(\left(\dfrac{2}{x-4}-\dfrac{6}{x-3}=3\right)(x+4)(x-3) \\ \)
\(\begin{array}{rrrrcrrrcrcrr}
2(x&-&3)&-&6(x&+&4)&=&3(x&+&4)(x&-&3) \\
2x&-&6&-&6x&-&24&=&3(x^2&+&x&-&12) \\
&&&&-4x&-&30&=&3x^2&+&3x&-&36 \\
&&&&+4x&+&30&&&+&4x&+&30 \\
\midrule
&&&&&&0&=&3x^2&+&7x&-&6 \\
&&&&&&0&=&(x&+&3)(3x&-&2) \\ \\
&&&&&&x&=&-3,&\dfrac{2}{3}&&&
\end{array}\) - \(\begin{array}{l}
\dfrac{\left(\dfrac{x^2}{y^2}-9\right)y^3}{\left(\dfrac{x+3y}{y^3}\right)y^3}\Rightarrow \dfrac{x^2y-9y^3}{x+3y}\Rightarrow \dfrac{y(x^2-9y^2)}{x+3y}\Rightarrow \dfrac{y(x-3y)\cancel{(x+3y)}}{\cancel{(x+3y)}} \\ \\
\Rightarrow y(x-3y)
\end{array}\) - \(\begin{array}{l}
\\
5y^2+2\cdot 7y+\sqrt{25y^2\cdot y} \\
5y^2+14y+5y\sqrt{y}
\end{array}\) - \(\dfrac{15}{3-\sqrt{5}}\cdot \dfrac{3+\sqrt{5}}{3+\sqrt{5}}\Rightarrow \dfrac{45+15\sqrt{5}}{9-5}\Rightarrow \dfrac{45+15\sqrt{5}}{4}\)
- \(\left(\dfrac{\cancel{a^0}1b^4}{c^8d^{-12}}\right)^{\frac{1}{4}}\Rightarrow \dfrac{b^{4\cdot \frac{1}{4}}}{c^{8\cdot \frac{1}{4}d^{-12\cdot \frac{1}{4}}}}\Rightarrow \dfrac{b}{c^2d^{-3}}\Rightarrow \dfrac{bd^3}{c^2}\)
- \(\begin{array}{ll}
\begin{array}{rrrrl}
\\ \\
\sqrt{2x+9}&-&3&=&x \\
&+&3&&\phantom{x}+3 \\
\midrule
(\sqrt{2x+9})^2&&&=&(x+3)^2
\end{array}
& \hspace{0.25in}
\begin{array}{rrrrrcrrrr}
\\ \\ \\ \\ \\
&2x&+&9&=&x^2&+&6x&+&9 \\
-&2x&-&9&&&-&2x&-&9 \\
\midrule
&&&0&=&x^2&+&4x&& \\
&&&0&=&x(x&+&4)&& \\ \\
&&&x&=&0,&-4&&&
\end{array}
\end{array}\) - \(\phantom{1}\)
- \(\begin{array}{rrl}
\\ \\
8x^2-32x&=&0 \\
8x(x-4)&=&0 \\
x&=&0, 4
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\
\dfrac{3x^2}{2}&=&\dfrac{48}{3} \\ \\
\sqrt{x^2}&=&\sqrt{16} \\
x&=&\pm 4
\end{array}\)
- \(\begin{array}{rrl}
- \(\phantom{1}\)
- \(\begin{array}{rrl}
\\ \\
x^2-5x+4&=&0 \\
(x-4)(x-1)&=&0 \\
x&=&1, 4
\end{array}\) - \(\begin{array}{rrl}
\\
(x-3)(x-1)&=&0 \\
x&=&1, 3
\end{array}\)
- \(\begin{array}{rrl}
- \(\begin{array}{rrrrcrcrcrr}
\\ \\ \\ \\ \\ \\ \\ \\
2(x&+&4)&=&x(x)&&&&&& \\
2x&+&8&=&x^2&&&&&& \\ \\
&&0&=&x^2&-&2x&-&8&& \\
&&0&=&x^2&-&4x&+&2x&-&8 \\
&&0&=&x(x&-&4)&+&2(x&-&4) \\
&&0&=&(x&-&4)(x&+&2)&& \\ \\
&&x&=&-2,&4&&&&&
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{Let }u&=&x^2 \\ \\
u^2-48u-49&=&0 \\
(u-49)(u+1)&=&0 \\ \\
(x^2-49)(x^2+1)&=&0 \\
(x-7)(x+7)(x^2+1)&=&0 \\ \\
x^2+1&=&\text{cannot be factored} \\
x&=&\pm 7
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\ \\ \\ \\ \\
40&=&\dfrac{1}{2}(h-2)(h) \\ \\
80&=&h^2-2h \\
0&=&h^2-2h-80 \\
0&=&(h-10)(h+8) \\
h&=&10, \cancel{-8} \\ \\
b&=&10-2=8
\end{array}\) - \(\phantom{1}\)
\(x, x+2, x+4 \\ \)
\(\begin{array}{crrrrrcrr}
x(x&+&4)&=&41&+&4(x&+&2) \\
x^2&+&4x&=&41&+&4x&+&8 \\
&-&4x&&&-&4x&& \\
\midrule
&&\sqrt{x^2}&=&\sqrt{49}&&&& \\
&&x&=&\pm 7&&&&
\end{array}\)
\(\phantom{1}\)
\(\text{numbers are }7, 9, 11\text{ or }-7,-5,-3\) - \(\begin{array}{rrrrrrcrrr}
\\ \\ \\ \\ \\ \\ \\ \\
&&&d_{\text{d}}&=&d_{\text{u}}&+&4&& \\ \\
&2(6&+&r)&=&3(6&-&r)&+&4 \\
&12&+&2r&=&18&-&3r&+&4 \\
-&12&+&3r&&-12&+&3r&& \\
\midrule
&&&\dfrac{5r}{5}&=&\dfrac{10}{5}&&&& \\ \\
&&&r&=&2&\text{km/h}&&&
\end{array}\)