Midterm 3 Prep Answer Key
[latexpage]
Midterm Three Review
-
- \(\dfrac{6\cancel{(a-b)}}{(a+b)\cancel{(a^2-ab+b^2)}}\cdot \dfrac{\cancel{a^2-ab+b^2}}{(a+b)\cancel{(a-b)}}\Rightarrow \dfrac{b}{(a+b)^2}\)
- \(\begin{array}{l}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\dfrac{x}{(x+5)(x-5)}-\dfrac{2}{(x-5)(x-1)} \\ \\
\text{LCD}=(x+5)(x-5)(x-1) \\ \\
\therefore \dfrac{x(x-1)-2(x+5)}{(x+5)(x-5)(x-1)}\Rightarrow \dfrac{x^2-x-2x-10}{(x+5)(x-5)(x-1)}\Rightarrow \dfrac{x^2-3x-10}{(x+5)(x-5)(x-1)} \\ \\
\Rightarrow \dfrac{\cancel{(x-5)}(x+2)}{(x+5)\cancel{(x-5)}(x-1)}\Rightarrow \dfrac{x+2}{(x+5)(x-1)}
\end{array}\) - \(\dfrac{\left(1-\dfrac{6}{x}\right)x^2}{\left(\dfrac{4}{x}-\dfrac{24}{x^2}\right)x^2}\Rightarrow \dfrac{x^2-6x}{4x-24}\Rightarrow \dfrac{x\cancel{(x-6)}}{4\cancel{(x-6)}}\Rightarrow \dfrac{x}{4}\)
- \(\phantom{1}\)
\(\left(\dfrac{4}{x+4}-\dfrac{5}{x-2}=5\right)(x+4)(x-2) \\ \)
\(\begin{array}{rrrrrrrrrrcrr}
4(x&-&2)&-&5(x&+&4)&=&5(x&+&4)(x&-&2) \\
4x&-&8&-&5x&-&20&=&5(x^2&+&2x&-&8) \\
&&&&-x&-&28&=&5x^2&+&10x&-&40 \\
&&&&+x&+&28&&&+&x&+&28 \\
\midrule
&&&&&&0&=&5x^2&+&11x&-&12 \\ \\
&&&&&&0&=&5x^2&+&15x-4x&-&12 \\
&&&&&&0&=&5x(x&+&3)-4(x&+&3) \\
&&&&&&0&=&(x&+&3)(5x&-&4) \\ \\
&&&&&&x&=&-3,&\dfrac{4}{5}&&& \\
\end{array}\) - True
- False
- \(\begin{array}{l}
\\ \\
4\cdot 6+3\sqrt{36\cdot 2}+4 \\
24+3\cdot 6\sqrt{2}+4 \\
28+18\sqrt{2}
\end{array}\) - \(\dfrac{\sqrt{\cancel{300}100a^{\cancel{5}4}\cancel{b^2}}}{\sqrt{\cancel{3}\cancel{a}\cancel{b^2}}}\Rightarrow \sqrt{100a^4}\Rightarrow 10a^2\)
- \(\dfrac{(12)(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\Rightarrow \dfrac{36+12\sqrt{6}}{9-6}\Rightarrow \dfrac{\cancel{36}12+\cancel{12}4\sqrt{6}}{\cancel{3}1}\Rightarrow 12+4\sqrt{6}\)
- \(\left(\dfrac{\cancel{a^0}1b^3}{c^6d^{-12}}\right)^{\frac{1}{3}}\Rightarrow \left(\dfrac{b^3d^{12}}{c^6}\right)^{\frac{1}{3}}\Rightarrow \dfrac{bd^4}{c^2}\)
- \(\begin{array}{rrl}
\\ \\ \\ \\ \\
(\sqrt{5x-6})^2& =& (x)^2 \\
5x-6&=&x^2 \\
0&=&x^2-5x+6 \\
0&=&(x-3)(x-2) \\ \\
x&=&3,2
\end{array}\) - \(\begin{array}{rrcrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
\sqrt{2x+9}&+&3&=&x&&&& \\
&-&3&&&-&3&& \\
\midrule
&&\sqrt{2x+9}&=&x&-&3&& \\ \\
&&(\sqrt{2x+9})^2&=&(x&-&3)^2&& \\
2x&+&9&=&x^2&-&6x&+&9 \\
-2x&-&9&&&-&2x&-&9 \\
\midrule
&&0&=&x^2&-&8x&& \\
&&0&=&x(x&-&8)&& \\ \\
&&x&=&0,&8&&&
\end{array}\) - \(\phantom{1}\)
\((\sqrt{x-3})^2=(\sqrt{2x-5})^2 \\ \)
\(\begin{array}{rrrrrrrr}
&x&-&3&=&2x&-&5 \\
-&x&+&5&&-x&+&5 \\
\midrule
&&&2&=&x&&
\end{array}\) - \(\phantom{1}\)
- \(\begin{array}{l}
\\ \\ \\ \\
b^2-4ac \\
=(4)^2-4(2)(3) \\
=16-24 \\
=-8 \\
\text{2 non-real solutions}
\end{array}\) - \(\begin{array}{l}
\\ \\ \\ \\
b^2-4ac \\
=(-2)^2-4(3)(-8) \\
=4+96 \\
=100 \\
\text{2 real solutions}
\end{array}\)
- \(\begin{array}{l}
- \(\phantom{1}\)
- \(\begin{array}{rrl}
\\ \\ \\
\dfrac{3x^2}{3}&=&\dfrac{27}{3} \\
x^2&=&9 \\
x&=&\pm 3
\end{array}\) - \(\begin{array}{rrl}
\\ \\
2x^2-16x&=&0 \\
2x(x-8)&=&0 \\
x&=&0,8
\end{array}\)
- \(\begin{array}{rrl}
- \(\phantom{1}\)
- \((x-4)(x+3)\Rightarrow x=4,-3\)
- \(\begin{array}{rrl}
\\ \\
x^2+9x+8&=&0 \\
(x+8)(x+1)&=&0 \\
x&=&-1,-8
\end{array}\)
- \(\left(\dfrac{x-3}{2}+\dfrac{6}{x+3}=1\right)(2)(x+3) \\ \)
\(\begin{array}{rrrrcrrrrrr}
(x&-&3)(x&+&3)&+&6(2)&=&2(x&+&3) \\
x^2&&&-&9&+&12&=&2x&+&6 \\
&-&2x&&&-&6&&-2x&-&6 \\
\midrule
&&x^2&-&2x&-&3&=&0&& \\
&&(x&-&3)(x&+&1)&=&0&& \\ \\
&&&&&&x&=&3,&-1&
\end{array}\) - \(\left(\dfrac{x-2}{x}=\dfrac{x}{x+4}\right)(x)(x+4) \\ \)
\(\begin{array}{rrrcrrrl}
&(x&-&2)(x&+&4)&=&x^2 \\
&x^2&+&2x&-&8&=&x^2 \\
-&x^2&&&+&8&&-x^2+8 \\
\midrule
&&&&&\dfrac{2x}{2}&=&\dfrac{8}{2} \\ \\
&&&&&x&=&4
\end{array}\) - \(\phantom{1}\)
\(\text{width}=W\hspace{0.5in}\text{length}=L=3+2W \\ \)
\(\begin{array}{rrl}
A&=&L\cdot W \\
65&=&W(3+2W) \\
65&=&3W+2W^2 \\ \\
0&=&2W^2+3W-65 \\
0&=&2W^2-10W+13W-65 \\
0&=&2W(W-5)+13(W-5) \\
0&=&(W-5)(2W+13) \\ \\
W&=&5, \cancel{-\dfrac{13}{2}} \\ \\
L&=&3+2W \\
L&=&13
\end{array}\) - \(\phantom{1}\)
\(x, x+2, x+4 \\ \)
\(\begin{array}{rrcrrrrrrrl}
&&x(x&+&2)&=&68&+&x&+&4 \\
x^2&+&2x&&&=&x&+&72&& \\
&-&x&-&72&&-x&-&72&& \\
\midrule
x^2&+&x&-&72&=&0&&&& \\ \\
(x&+&9)(x&-&8)&=&0&&&& \\
&&&&x&=&\cancel{-9},&8&&&
\end{array}\)
∴ 8, 10, 12 - \(\phantom{1}\)
\(d=r\cdot t\text{ and }d_{\text{up}}=d_{\text{down}} \\ \)
\(\begin{array}{rrrrrrcr}
&8(r&-&4)&=&6(r&+&4) \\
&8r&-&32&=&6r&+&24 \\
-&6r&+&32&&-6r&+&32 \\
\midrule
&&&2r&=&56&& \\
&&&r&=&28&\text{km/h}& \\
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
A&=&\dfrac{1}{2}bh \\ \\
(330&=&\dfrac{1}{2}(h+8)h)(2) \\ \\
660&=&h^2+8h \\ \\
0&=&h^2+8h-660 \\
0&=&h^2+30h-22h-660 \\
0&=&h(h+30)-22(h+30) \\ \\
0&=&(h+30)(h-22) \\
h&=&\cancel{-30}, 22 \\ \\
\therefore b&=&h+8 \\
&=&22+8 \\
&=&30
\end{array}\)