"

Final Exam: Version A Answer Key

[latexpage]

Questions from Chapters 1 to 3

  1. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\
    -(6)-\sqrt{6^2-4(4)(2)} \\ \\
    -6-\sqrt{36-32} \\ \\
    -6-\sqrt{4} \\ \\
    -6-2=-8
    \end{array}\)
  2. \(\begin{array}{rrrrrrrrrrr}
    \\ \\ \\ \\
    6x&+&24&=&35&-&5x&-&8&+&12x \\
    6x&+&24&=&27&+&7x&&&& \\
    -7x&-&24&&-24&-&7x&&&& \\
    \midrule
    &&-x&=&3&&&&&& \\
    &&\therefore x&=&-3&&&&&& \\
    \end{array}\)
  3. \(\phantom{1}\)
    \(\left(\dfrac{x+4}{2}-\dfrac{1}{2}=\dfrac{x+2}{4}\right)(4) \\ \)
    \(\begin{array}{crrrcrrrl}
    2(x&+&4)&-&1(2)&=&x&+&2 \\
    2x&+&8&-&2&=&x&+&2 \\
    -x&-&8&+&2&&-x&-&8+2 \\
    \midrule
    &&&&x&=&-4&&
    \end{array}\)
  4. \(x=-2\)
  5. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2+\Delta y^2 \\
    &=&(2--4)^2+(6--2)^2 \\
    &=&6^2+8^2 \\
    &=&36+64 \\
    &=&100 \\ \\
    \therefore d&=&\sqrt{100}=10
    \end{array}\)
  6. \(2x-3y=6\)
    \(x\) \(y\)
    0 −2
    3 0
    6 2

    Line on graph passes through (0,-2)

  7. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    x&-&2x&+&10&\le &18&+&3x \\
    &&-x&+&10&\le &18&+&3x \\
    +&&-3x&-&10&&-10&-&3x \\
    \midrule
    &&&&\dfrac{-4x}{-4}&\le &\dfrac{8}{-4}&& \\ \\
    &&&&x&\ge &-2&& \\
    \end{array}\)
    \(\left[-2, \infty)\)
    image or equal to -2" width="300" height="69" class="alignnone wp-image-1361 size-medium">
  8. \(\phantom{1}\)
    \(\left(-1 < \dfrac{3x-2}{7}<1 \right)(7) \\ \)
    \(\begin{array}{rrrcrrr}
    \\ \\ \\ \\
    -7&<&3x&-&2&<&7 \\
    +2&&&+&2&&+2 \\
    \midrule
    \dfrac{-5}{3}&<&&\dfrac{3x}{3}&&<&\dfrac{9}{3} \\ \\
    -\dfrac{5}{3}&<&&x&&<&3
    \end{array}\)
    \(\phantom{1}\)
    \(\left(-\dfrac{5}{3}, 3\right)\)
    -5 over 3, 3
  9. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    t=\dfrac{k}{r} \\
    \begin{array}{rrl}
    \\
    &&\text{1st data} \\ \\
    t&=&45\text{ min} \\
    k&=&\text{find 1st} \\
    r&=&600\text{ kL/min} \\ \\
    t&=&\dfrac{k}{r} \\ \\
    45&=&\dfrac{k}{600} \\ \\
    k&=&45(600) \\
    k&=&27000\text{ kL}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    &&\text{2nd data} \\ \\
    t&=&\text{find} \\
    k&=&27000 \\
    r&=&1000\text{ kL/min} \\ \\
    t&=&\dfrac{k}{r} \\ \\
    t&=&\dfrac{27000}{1000} \\ \\
    t&=&27\text{ min}
    \end{array}
    \end{array}\)
  10. \(\phantom{1}\)
    \(x, x+2 \\ \)
    \(\begin{array}{rrrrrrrrr}
    x&+&x&+&2&=&4(x)&-&12 \\
    &&2x&+&2&=&4x&-&12 \\
    &-&2x&+&12&&-2x&+&12 \\
    \midrule
    &&&&\dfrac{14}{2}&=&\dfrac{2x}{2}&& \\ \\
    &&&&x&=&7&&
    \end{array}\)
    \(\phantom{1}\)
    \(\text{numbers are }7,9\)

Questions from Chapters 4 to 6

  1. \(\begin{array}{rrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &2x&+&5y&=&-18 \\
    +&-2x&+&y&=&6 \\
    \midrule
    &&&\dfrac{6y}{6}&=&\dfrac{-12}{6} \\ \\
    &&&y&=&-2 \\ \\
    &\therefore y&-&6&=&2x \\
    &-2&-&6&=&2x \\
    &&&2x&=&-8 \\
    &&&x&=&-4
    \end{array}\)
    Answer: \((-4, -2)\)
  2. \(\begin{array}{ll}
    \begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(8x&+&7y&=&51)(-2) \\
    &(5x&+&2y&=&20)(7) \\ \\
    &-16x&-&14y&=&-102 \\
    +&35x&+&14y&=&\phantom{-}140 \\
    \midrule
    &&&\dfrac{19x}{19}&=&\dfrac{38}{19} \\ \\
    &&&x&=&2 \\ \\
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    \\ \\ \\ \\ \\
    \therefore 5x&+&2y&=&20 \\
    5(2)&+&2y&=&20 \\
    10&+&2y&=&20 \\
    -10&&&&-10 \\
    \midrule
    &&2y&=&10 \\
    &&y&=&5
    \end{array}
    \end{array}\)
    Answer: \((2, 5)\)
  3. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\
    \begin{array}{rrrrrrrl}
    \\ \\ \\ \\
    &-2x&-&2y&-&12z&=&-10 \\
    +&2x&&&-&3z&=&\phantom{-}4 \\
    \midrule
    &&&(-2y&-&15z&=&-6)(3) \\
    &&&(3y&+&4z&=&\phantom{-}9)(2) \\ \\
    &&&-6y&-&45z&=&-18 \\
    &&+&6y&+&8z&=&\phantom{-}18 \\
    \midrule
    &&&&&-37z&=&0 \\
    &&&&&z&=&0 \\ \\
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrrrl}
    2x&-&\cancel{3z}0&=&4 \\
    &&x&=&\dfrac{4}{2}\text{ or }2 \\ \\
    3y&+&\cancel{4z}0&=&9 \\
    &&y&=&\dfrac{9}{3}\text{ or }3
    \end{array}
    \end{array}\)
    Answer \((2, 3, 0)\)
  4. \(\begin{array}{l}
    \\ \\
    24+\{-3x-\cancel{\left[6x-3(5-2x)\right]^0}1\}+3x \\
    24-3x-1+3x \\
    23
    \end{array}\)
  5. \(2ab^3(a^2-16)\Rightarrow 2a^3b^3-32ab^3\)
  6. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\
    (x^{1--2}y^{-3-4})^{-1} \\ \\
    (x^3y^{-7})^{-1} \\ \\
    x^{-3}y^7 \\ \\
    \dfrac{y^7}{x^3}
    \end{array}\)
  7. \(\begin{array}{l}
    \\ \\
    3x^2+3x+8x+8 \\
    3x(x+1)+8(x+1) \\
    (x+1)(3x+8)
    \end{array}\)
  8. \((4x)^3-y^3\Rightarrow (4x-y)(16x^2+4xy+y^2)\)
  9. \(\begin{array}{rrrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(A&+&B&=&\phantom{191.}50)(-370) \\
    &(3.95A&+&3.70B&=&191.25)(100) \\ \\
    &-370A&-&370B&=&-18500 \\
    +&395A&+&370B&=&\phantom{-}19125 \\
    \midrule
    &&&25A&=&625 \\ \\
    &&&A&=&\dfrac{625}{25}\text{ or }25 \\ \\
    &A&+&B&=&50 \\
    &25&+&B&=&50 \\
    &&&B&=&25 \\
    \end{array}\)
  10. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(d&+&q&=&16)(-10) \\
    &10d&+&25q&=&235 \\ \\
    &-10d&-&10q&=&-160 \\
    +&10d&+&25q&=&\phantom{-}235 \\
    \midrule
    &&&\dfrac{15q}{15}&=&\dfrac{75}{15} \\ \\
    &&&q&=&5 \\
    &&&\therefore d&=&16-5=11 \\
    \end{array}\)

Questions from Chapters 7 to 10

  1. \(\dfrac{\cancel{15}3s^{\cancel{3}2}}{\cancel{3t^2}1}\cdot \dfrac{\cancel{17}1\cancel{s^3}}{\cancel{5}1\cancel{t}}\cdot \dfrac{\cancel{3t^3}}{\cancel{34}2\cancel{s^4}}\Rightarrow \dfrac{3s^2}{2}\)
  2. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}=(x+2)(x-2) \\ \\
    \dfrac{2x(x-2)-4x(x+2)+20}{(x+2)(x-2)} \\ \\
    \dfrac{2x^2-4x-4x^2-8x+20}{(x+2)(x-2)} \\ \\
    \dfrac{-2x^2-12x+20}{(x+2)(x-2)} \\ \\
    \dfrac{-2(x^2+6x-10)}{(x+2)(x-2)}
    \end{array}\)
  3. \(\begin{array}{l}
    \dfrac{\left(\dfrac{x^2}{y^2}-9\right)y^3}{\left(\dfrac{x+3y}{y^3}\right)y^3}\Rightarrow \dfrac{x^2y-9y^3}{x+3y}\Rightarrow \dfrac{y(x^2-9y^2)}{x+3y}\Rightarrow \dfrac{y(x-3y)\cancel{(x+3y)}}{\cancel{(x+3y)}} \\ \\
    \Rightarrow y(x-3y)
    \end{array}\)
  4. \(\begin{array}{l}
    \\ \\ \\ \\
    3\cdot 5\sqrt{x}-2\sqrt{36\cdot 2x}-\sqrt{16\cdot x^2\cdot x} \\ \\
    15\sqrt{x}-2\cdot 6\sqrt{2x}-4x\sqrt{x} \\ \\
    15\sqrt{x}-12\sqrt{2x}-4x\sqrt{x}
    \end{array}\)
  5. \(\dfrac{\sqrt{m^6\cancel{n}}}{\sqrt{3\cancel{n}}}\Rightarrow \dfrac{m^3}{\sqrt{3}}\cdot \dfrac{\sqrt{3}}{\sqrt{3}}\Rightarrow \dfrac{m^3\sqrt{3}}{3}\)
  6. \(\left(\dfrac{\cancel{a^0}1b^4}{c^8d^{-12}}\right)^{\frac{1}{4}}\Rightarrow \dfrac{b^{4\cdot \frac{1}{4}}}{c^{8\cdot \frac{1}{4}}d^{-12\cdot \frac{1}{4}}}\Rightarrow \dfrac{b}{c^2d^{-3}}\Rightarrow \dfrac{bd^3}{c^2}\)
  7. \(\begin{array}{l}
    \\
    (x-5)(x+1)=0 \\
    x=5,-1
    \end{array}\)
  8. \(\begin{array}{rrrrrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&&(x&-&3)^2&=&(x)^2 \\ \\
    &x^2&-&6x&+&9&=&\phantom{-}x^2 \\
    -&x^2&&&&&&-x^2 \\
    \midrule
    &&&-6x&+&9&=&0 \\ \\
    &&&&&\dfrac{-6x}{-6}&=&\dfrac{-9}{-6} \\ \\
    &&&&&x&=&\dfrac{3}{2}
    \end{array}\)
  9. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    A&=&\dfrac{1}{2}bh \\ \\
    20&=&\dfrac{1}{2}(h+6)h \\ \\
    40&=&h^2+6h \\ \\
    0&=&h^2+6h-40 \\
    0&=&h^2+10h-4h-40 \\
    0&=&h(h+10)-4(h+10) \\
    0&=&(h-4)(h+10) \\ \\
    h&=&4, \cancel{-10} \\
    b&=&4+6=10
    \end{array}\)
  10. \(\phantom{1}\)
    \(x, x+2, x+4 \\ \)
    \(\begin{array}{rrrrcrrrlrrrr}
    &&&&x(x&+&2)&=&\phantom{-}8&+&6(x&+&4) \\
    x^2&+&2x&&&&&=&\phantom{-}8&+&6x&+&24 \\
    &-&6x&-&8&-&24&&-8&-&6x&-&24 \\
    \midrule
    &&x^2&-&4x&-&32&=&0&&&& \\ \\
    x^2&+&4x&-&8x&-&32&=&0&&&& \\
    x(x&+&4)&-&8(x&+&4)&=&0&&&& \\
    &&(x&+&4)(x&-&8)&=&0&&&& \\
    &&&&&&x&=&-4,8&&&&
    \end{array}\)
    \(\phantom{1}\)
    \(\therefore \text{ numbers are }-4,-2,0 \text{ or } 8,10,12\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.