Answer Key 9.9
[latexpage]
- \(3+8-4i\)
\(11-4i\) - \(3i-7i\)
\(-4i\) - \(7i-3+2i\)
\(9i-3\) - \(5-6-6i\)
\(-1-6i\) - \(-6i-3-7i\)
\(-13i-3\) - \(-8i-7i-5+3i\)
\(-12i-5\) - \(3-3i-7-8i\)
\(-4-11i\) - \(-4-i+1-5i\)
\(-3-6i\) - \(i-2-3i-6\)
\(-2i-8\) - \(5-4i+8-4i\)
\(13-8i\) - \(-48i^2\)
\(-48(-1)\)
\(48\) - \(-24i^2\)
\(-24(-1)\)
\(24\) - \(-40i^2\)
\(-40(-1)\)
\(40\) - \(-32i^2\)
\(-32(-1)\)
\(32\) - \(49i^2\)
\(49(-1)\)
\(-49\) - \(-7i^2(4-3i)\)
\(-28i^2+21i^3\)
\(-28(-1)+21(-1)i\)
\(28-21i\) - \(36+60i+25i^2\)
\(36+60i+25(-1)\)
\(36+60i-25\)
\(11+60i\) - \(16i^2(-2-8i)\)
\(32i^2+128i^3\)
\(32(-1)+128(-1)i\)
\(-32-128i\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\
&56&-&42i&& \\
&&+&32i&-&24i^2 \\
\midrule
&56&-&10i&-&24(-1) \\
+&24&&&\Longleftarrow & \\
\midrule
&80&-&10i&&
\end{array}\) - \(9i^2(4-4i)\)
\(-36i^2+36i^3\)
\(-36(-1)+36(-1)i\)
\(36-36i\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\
&-8&+&10i&& \\
&&+&28i&-&35i^2 \\
\midrule
&-8&+&38i&-&35(-1) \\
+&35&&&\Longleftarrow & \\
\midrule
&27&+&38i&&
\end{array}\) - \(-32i+64i+4+12i\)
\(-28+76i\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\
&32&+&24i&& \\
&&-&16i&-&12i^2 \\
\midrule
&32&+&8i&-&12(-1) \\
+&12&&&\Longleftarrow & \\
\midrule
&44&+&8i&&
\end{array}\) - \(-18i+12i^2-28i^2\)
\(-18i+12(-1)-28(-1)\)
\(-18i-12+28\)
\(-18i+16\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\
&2&+&10i&& \\
&&+&i&+&5i^2 \\
\midrule
&2&+&11i&+&5(-1) \\
-&5&&&\Longleftarrow & \\
\midrule
&-3&+&11i&&
\end{array}\) - \(\begin{array}{rrrrrl}
\\ \\ \\ \\ \\
&-6&+&3i&& \\
&&+&10i&-&5i^2 \\
\midrule
&-6&+&13i&-&5(-1) \\
+&5&&&\Longleftarrow & \\
\midrule
&-1&+&13i&&
\end{array}\) - \(\dfrac{-9+5i}{i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{-9i+5i^2}{i^2}\Rightarrow \dfrac{-9i+5(-1)}{(-1)}\Rightarrow 9i+5\)
- \(\dfrac{-3+2i}{-3i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{-3i+2i^2}{-3i^2}\Rightarrow \dfrac{-3i+2(-1)}{-3(-1)}\Rightarrow \dfrac{-3i-2}{3}\)
- \(\dfrac{-10i-9i}{6i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{-10i-9i^2}{6i^2}\Rightarrow \dfrac{-10i-9(-1)}{6(-1)}\Rightarrow \dfrac{-10i+9}{-6}\)
- \(\dfrac{-4+2i}{3i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{-4i+2i^2}{3i^2}\Rightarrow \dfrac{-4i+2(-1)}{3(-1)}\Rightarrow \dfrac{-4i-2}{-3}\)
- \(\dfrac{-3-6i}{4i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{-3i-6i^2}{4i^2}\Rightarrow \dfrac{-3i-6(-1)}{4(-1)}\Rightarrow \dfrac{-3i+6}{4}\)
- \(\dfrac{-5+9i}{9i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{-5i+9i^2}{9i^2}\Rightarrow \dfrac{-5i+9(-1)}{9(-1)}\Rightarrow \dfrac{-5i-9}{-9}\Rightarrow \dfrac{5i+9}{9}\)
- \(\dfrac{10-i}{-i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{10i-i^2}{-i^2}\Rightarrow \dfrac{10i-(-1)}{-(-1)}\Rightarrow 10i+1\)
- \(\dfrac{10}{5i}\cdot \dfrac{i}{i}\Rightarrow \dfrac{10i}{5i^2}\Rightarrow \dfrac{10i}{5(-1)}\Rightarrow \dfrac{10i\div -5}{-5\div -5}\Rightarrow -2i\)
- \(\dfrac{4i}{-10+i}\cdot \dfrac{-10-i}{-10-i}\Rightarrow \dfrac{-40i-4i^2}{(-10)^2-(i)^2}\Rightarrow \dfrac{-40i-4(-1)}{100--1}\Rightarrow \dfrac{-40i+4}{101}\)
- \(\dfrac{9i}{1-5i}\cdot \dfrac{1+5i}{1+5i}\Rightarrow \dfrac{9i+45i^2}{(1)^2-(5i)^2}\Rightarrow \dfrac{9i+45(-1)}{1-25i^2}\Rightarrow \dfrac{9i-45}{1-25(-1)}\Rightarrow \dfrac{9i-45}{1+25}\Rightarrow \\ \)
\(\dfrac{9i-45}{26}\) - \(\dfrac{8}{7-6i}\cdot \dfrac{7+6i}{7+6i}\Rightarrow \dfrac{56+48i}{7^2-36i^2}\Rightarrow \dfrac{56+48i}{49-36(-1)}\Rightarrow \dfrac{56+48i}{49+36}\Rightarrow \dfrac{56+48i}{85}\)
- \(\dfrac{4}{4+6i}\cdot \dfrac{4-6i}{4-6i}\Rightarrow \dfrac{16-24i}{16-36i^2}\Rightarrow \dfrac{16-24i}{16+36}\Rightarrow \dfrac{(16-24i)\div 4}{52\div 4} \Rightarrow \dfrac{4-6i}{13}\)
- \(\dfrac{7}{10-7i}\cdot \dfrac{10+7i}{10+7i}\Rightarrow \dfrac{70+49i}{100-49i^2}\Rightarrow \dfrac{70+49i}{100+49}\Rightarrow \dfrac{70+49i}{149}\)
- \(\dfrac{9}{-8-6i}\cdot \dfrac{-8+6i}{-8+6i}\Rightarrow \dfrac{-72+54i}{64-36i^2}\Rightarrow \dfrac{-72+54i}{64+36}\Rightarrow \dfrac{(-72+54i)\div 2}{100\div 2}\Rightarrow \\ \)
\(\dfrac{-36+27i}{50}\) - \(\dfrac{5i}{-6-i}\cdot \dfrac{-6+i}{-6+i}\Rightarrow \dfrac{-30i+5i^2}{36-i^2}\Rightarrow \dfrac{-30i-5}{36+1}\Rightarrow \dfrac{-30i-5}{37}\)
- \(\dfrac{8i}{6-7i}\cdot \dfrac{6+7i}{6+7i}\Rightarrow \dfrac{48i+56i^2}{36-49i^2}\Rightarrow \dfrac{48i-56}{36+49}\Rightarrow \dfrac{48i-56}{85}\)
- \(\pm 9i\)
- \(\sqrt{-5\cdot 9}\Rightarrow \pm 3\sqrt{5}i\)
- \(\sqrt{-20}\Rightarrow \sqrt{-4\cdot 5}\Rightarrow \pm2\sqrt{5}i\)
- \(\sqrt{24}\Rightarrow \sqrt{4\cdot 6}\Rightarrow \pm 2\sqrt{6}\)
- \(\dfrac{3+\sqrt{3\cdot -9}}{6}\Rightarrow \dfrac{3+3\sqrt{3}i}{6}\Rightarrow \dfrac{1+\sqrt{3}i}{2}\)
- \(\dfrac{-4-\sqrt{-2\cdot 4}}{-4}\Rightarrow \dfrac{-4-2\sqrt{2}i}{-4}\Rightarrow \dfrac{2+\sqrt{2}i}{2}\)
- \(\dfrac{8-4i}{4}\Rightarrow 2-i\)
- \(\dfrac{6+\sqrt{2\cdot -16}}{4}\Rightarrow \dfrac{6+4\sqrt{2}i}{4}\Rightarrow \dfrac{3+2\sqrt{2}i}{2}\)
- \(i\)
- \(i^3\Rightarrow -i\)
- 1
- 1
- \(i^2\Rightarrow -1\)
- \(i\)
- \(i^2\Rightarrow -1\)
- \(i^3\Rightarrow -i\)