Answer Key 9.4
[latexpage]
- \(12\sqrt{5\cdot 16}\)
\(12\cdot 4 \sqrt{5}\)
\(48\sqrt{5}\) - \(-5\sqrt{10\cdot 15}\)
\(-5\sqrt{150}\)
\(-5\sqrt{25\cdot 6}\Rightarrow -25\sqrt{6}\) - \(\sqrt{15\cdot 12\cdot m^2}\)
\(\sqrt{3\cdot 5\cdot 3\cdot 4\cdot m^2}\)
\(3\cdot 2m\sqrt{5}\)
\(6m\sqrt{5}\) - \(-5\sqrt{5r^3\cdot 10r^2}\)
\(-5\sqrt{25\cdot 2\cdot r^4\cdot r}\)
\(-25r^2\sqrt{2r}\) - \(\sqrt[3]{8x^7}\)
\(\sqrt[3]{8\cdot x^6\cdot x}\)
\(2x^2 \sqrt[3]{x}\) - \(3 \sqrt[3]{40a^7}\)
\(3 \sqrt[3]{5\cdot 8\cdot a^6\cdot a}\)
\(3\cdot 2a^2 \sqrt[3]{5a}\Rightarrow 6a^2 \sqrt[3]{5a}\) - \(\sqrt{12}+2\sqrt{6}\)
\(\sqrt{4\cdot 3}+2\sqrt{6}\)
\(2\sqrt{3}+2\sqrt{6}\) - \(\sqrt{50}+\sqrt{20}\)
\(\sqrt{25\cdot 2}+\sqrt{4\cdot 5}\)
\(5\sqrt{2}+2\sqrt{5}\) - \(-15\sqrt{45}-10\sqrt{15}\)
\(-15\sqrt{9\cdot 5}-10\sqrt{15}\)
\(-15\cdot 3\sqrt{5}-10\sqrt{15}\)
\(-45\sqrt{5}-10\sqrt{15}\) - \(15\sqrt{45}+10\sqrt{15}\)
\(15\sqrt{9\cdot 5}+10\sqrt{15}\)
\(15\cdot 3\sqrt{5}+10\sqrt{15}\)
\(45\sqrt{5}+10\sqrt{15}\) - \(25n\sqrt{10}+5\sqrt{20}\)
\(25n\sqrt{10}+5\sqrt{4\cdot 5}\)
\(25n\sqrt{10}+10\sqrt{5}\) - \(\sqrt{75}-3\sqrt{45v}\)
\(\sqrt{25\cdot 3}-3\sqrt{9\cdot 5v}\)
\(5\sqrt{3}-9\sqrt{5v}\) - \(-6+2\sqrt{2}-6\sqrt{2}+2(\sqrt{2})(\sqrt{2})\)
\(-6+2\sqrt{2}-6\sqrt{2}+2(2)\)
\(-6+4+2\sqrt{2}-6\sqrt{2}\)
\(-2-4\sqrt{2}\) - \(10-4\sqrt{3}-5\sqrt{3}+2(\sqrt{3})(\sqrt{3})\)
\(10-4\sqrt{3}-5\sqrt{3}+2(3)\)
\(10+6-4\sqrt{3}-5\sqrt{3}\)
\(16-9\sqrt{3}\) - \((2\sqrt{5})(\sqrt{5})-\sqrt{5}-10\sqrt{5}+5\)
\(2(5)-\sqrt{5}-10\sqrt{5}+5\)
\(10+5-\sqrt{5}-10\sqrt{5}\)
\(15-11\sqrt{5}\) - \(10(3)+4\sqrt{12}+5\sqrt{15}+2\sqrt{20}\)
\(30+4\sqrt{4\cdot 3}+5\sqrt{15}+2\sqrt{5\cdot 4}\)
\(30+5\sqrt{15}+8\sqrt{3}+4\sqrt{5}\) - \(3(2a)+6\sqrt{6a^2}+\sqrt{10a^2}+2\sqrt{15a^2}\)
\(6a+6a\sqrt{6}+a\sqrt{10}+2a\sqrt{15}\) - \((-2\sqrt{2p}+5\sqrt{5})(2\sqrt{5p})\)
\(-4\sqrt{10p^2}+10\sqrt{25p}\)
\(-4p\sqrt{10}+50\sqrt{p}\) - \(15+12\sqrt{3}+20\sqrt{3}+16(3)\)
\(63+32\sqrt{3}\) - \(-5\sqrt{4m}+\sqrt{2m}+25\sqrt{2}-5\)
\(-10\sqrt{m}+\sqrt{2m}+25\sqrt{2}-5\) - \(\phantom{1}\)
\(\dfrac{\sqrt{12}}{5\sqrt{100}}\div \sqrt{4} \\ \)
\(\dfrac{\sqrt{3}}{5\sqrt{25}}\Rightarrow \dfrac{\sqrt{3}}{5\cdot 5}\Rightarrow \dfrac{\sqrt{3}}{25}\) - \(\dfrac{\sqrt{15}}{2\cdot 2}\Rightarrow \dfrac{\sqrt{15}}{4}\)
- \(\phantom{1}\)
\(\dfrac{\sqrt{5}}{4\sqrt{125}}\div \sqrt{5} \\ \)
\(\dfrac{\sqrt{1}}{4\sqrt{25}}\Rightarrow \dfrac{1}{4\cdot 5}\Rightarrow \dfrac{1}{20}\) - \(\phantom{1}\)
\(\dfrac{\sqrt{12}}{\sqrt{3}}\div \sqrt{3} \\ \)
\(\dfrac{\sqrt{4}}{\sqrt{1}}\Rightarrow \dfrac{2}{1}\Rightarrow 2\) - \(\phantom{1}\)
\(\dfrac{\sqrt{10}}{\sqrt{6}}\div \sqrt{2} \\ \)
\(\dfrac{\sqrt{5}}{\sqrt{3}}\) - Does not reduce
- \(\dfrac{5x^2}{4\sqrt{3\cdot x^2\cdot x\cdot y^2\cdot y}}\Rightarrow \dfrac{5x^2}{4xy\sqrt{3xy}}\Rightarrow \dfrac{5x}{4y\sqrt{3xy}}\)
- \(\dfrac{4}{5y^2\sqrt{3x}}\)
- \(\phantom{1}\)
\(\dfrac{\sqrt{2p^2}}{\sqrt{3p}}\div \sqrt{p} \\ \)
\(\dfrac{\sqrt{2p}}{\sqrt{3}}\) - \(\phantom{1}\)
\(\dfrac{\sqrt{8n^2}}{\sqrt{10n}}\div \sqrt{2n} \\ \)
\(\dfrac{\sqrt{4n}}{\sqrt{5}}\Rightarrow \dfrac{2\sqrt{n}}{\sqrt{5}}\)