"

Answer Key 9.10

[latexpage]

  1. \(\begin{array}{l}
    \\ \\
    \text{Father}=\text{Bill}-2\text{ h}\\ \\
    \therefore \dfrac{1}{B-2\text{ h}}+\dfrac{1}{B}=\dfrac{1}{2\text{ h } 24\text{ min}}
    \end{array}\)
  2. \(\begin{array}{l}
    \\ \\
    \text{Smaller}=\text{Larger}+4\text{ h}\\ \\
    \therefore \dfrac{1}{L+4\text{ h}}+\dfrac{1}{L}=\dfrac{1}{3\text{ h }45\text{ min}}
    \end{array}\)
  3. \(\begin{array}{l}
    \\ \\
    \text{Jack}=\text{Bob}-1\text{ h} \\ \\
    \therefore \dfrac{1}{B-1\text{ h}}+\dfrac{1}{B}=\dfrac{1}{1.2\text{ h}}
    \end{array}\)
  4. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\
    \dfrac{1}{Y}+\dfrac{1}{B}=\dfrac{1}{T}\\ \\
    Y=6\text{ d}\\
    B=4\text{ d}\\ \\
    \therefore \dfrac{1}{6}+\dfrac{1}{4}=\dfrac{1}{T}
    \end{array}\)
  5. \(\begin{array}{l}
    \\ \\
    \text{John}=\text{Carlos}+8\text{ h}\\ \\
    \dfrac{1}{C+8\text{ h}}+\dfrac{1}{C}=\dfrac{1}{3\text{ h}}
    \end{array}\)
  6. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\ \\
    M=3\text{ d} \\
    N=4\text{ d} \\
    E=5\text{ d} \\ \\
    \dfrac{1}{M}+\dfrac{1}{N}+\dfrac{1}{E}=\dfrac{1}{T} \\ \\
    \dfrac{1}{3\text{ d}}+\dfrac{1}{4\text{ d}}+\dfrac{1}{5\text{ d}}=\dfrac{1}{T}
    \end{array}\)
  7. \(\begin{array}{l}
    \\ \\ \\ \\ \\
    \text{Raj}=4 \text{ d} \\ \\
    \text{Rubi}=\dfrac{1}{2}\text{ Raj or }2\text{ d} \\ \\
    \therefore \dfrac{1}{4 \text{ d}}+\dfrac{1}{2\text{ d}}=\dfrac{1}{T}
    \end{array}\)
  8. \(\dfrac{1}{20\text{ min}}+\dfrac{1}{30\text{ min}}=\dfrac{1}{T}\)
  9. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{24\text{ d}}&+&\dfrac{1}{I}&=&\dfrac{1}{6\text{ d}} \\ \\
    &&\dfrac{1}{I}&=&\dfrac{1}{6\text{ d}}-\dfrac{1}{24\text{ d}} \\ \\
    &&\dfrac{1}{I}&=&\dfrac{4}{24\text{ d}}-\dfrac{1}{24\text{ d}} \\ \\
    &&\dfrac{1}{I}&=&\dfrac{1}{8\text{ d}} \\ \\
    &&\therefore I&=&8\text{ days}
    \end{array}\)
  10. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{C}&+&\dfrac{1}{A}&=&\dfrac{1}{3.75\text{ d}} \\ \\
    \dfrac{1}{5\text{ d}}&+&\dfrac{1}{A}&=&\dfrac{1}{3.75\text{ d}} \\ \\
    &&\dfrac{1}{A}&=&\dfrac{1}{3.75\text{ d}}-\dfrac{1}{5\text{ d}} \\ \\
    &&\dfrac{1}{A}&=&\dfrac{4}{15\text{ d}}-\dfrac{3}{15\text{ d}} \\ \\
    &&\dfrac{1}{A}&=&\dfrac{1}{15\text{ d}} \\ \\
    &&\therefore A&=&15\text{ days}
    \end{array}\)
  11. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{S}&+&\dfrac{1}{F}&=&\dfrac{1}{\text{job}} \\ \\
    \dfrac{1}{3\text{ d}}&+&\dfrac{1}{6\text{ d}}&=&\dfrac{1}{\text{job}} \\ \\
    \dfrac{2}{6\text{ d}}&+&\dfrac{1}{6\text{ d}}&=&\dfrac{1}{\text{job}} \\ \\
    &&\dfrac{3}{6\text{ d}}&=&\dfrac{1}{\text{job}} \\ \\
    &&\dfrac{1}{2\text{ d}}&=&\dfrac{1}{\text{job}} \\ \\
    &&\therefore \text{job}&=&2 \text{ days}
    \end{array}\)
  12. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{T}&+&\dfrac{1}{J}&=&\dfrac{1}{\text{job}} \\ \\
    \dfrac{1}{10\text{ h}}&+&\dfrac{1}{8\text{ h}}&=&\dfrac{1}{\text{job}} \\ \\
    \dfrac{4}{40\text{ h}}&+&\dfrac{5}{40\text{ h}}&=&\dfrac{1}{\text{job}} \\ \\
    &&\dfrac{9}{40\text{ h}}&=&\dfrac{1}{\text{job}} \\ \\
    &&\therefore \text{job}&=&\dfrac{40\text{ h}}{9} \\ \\
    &&\text{job}&=&4\dfrac{4}{9}\text{ h}= 4.\bar{4}\text{ h}
    \end{array}\)
  13. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&\text{fast}&=&2\times \text{slow} \\ \\
    \dfrac{1}{F}&+&\dfrac{1}{S}&=&\dfrac{1}{6\text{ h}} \\ \\
    \dfrac{1}{2S}&+&\dfrac{1}{S}&=&\dfrac{1}{6\text{ h}} \\ \\
    \dfrac{1}{2S}&+&\dfrac{2}{2S}&=&\dfrac{1}{6\text{ h}} \\ \\
    &&\dfrac{3}{2S}&=&\dfrac{1}{6\text{ h}} \\ \\
    &&\dfrac{2S}{3}&=&6\text{ h} \\ \\
    &&S&=&\dfrac{6(3)}{2} \\ \\
    &&S&=&9\text{ h}
    \end{array}\)
  14. \(\begin{array}{rrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&\text{slower}&=&3\times \text{faster} \\ \\
    \dfrac{1}{F}&+&\dfrac{1}{S}&=&\dfrac{1}{3\text{ h}} \\ \\
    \dfrac{1}{F}&+&\dfrac{1}{3F}&=&\dfrac{1}{3\text{ h}} \\ \\
    \dfrac{3}{3F}&+&\dfrac{1}{3F}&=&\dfrac{1}{3\text{ h}} \\ \\
    &&\dfrac{4}{3F}&=&\dfrac{1}{3\text{ h}} \\ \\
    &&\therefore \dfrac{4}{3}&=&\dfrac{F}{3\text{ h}} \\ \\
    &&F&=&4\text{ h}
    \end{array}\)
  15. \(\begin{array}{rrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&\text{full}&=&8\text{ h} \\ \\
    &&\text{empty}&=&2\times\text{full or }16\text{ h} \\ \\
    \dfrac{1}{F}&-&\dfrac{1}{E}&=&\dfrac{1}{T} \\ \\
    \dfrac{1}{8\text{ h}}&-&\dfrac{1}{16\text{ h}}&=&\dfrac{1}{T} \\ \\
    \dfrac{2}{16\text{ h}}&-&\dfrac{1}{16\text{ h}}&=&\dfrac{1}{T} \\ \\
    &&\therefore \dfrac{1}{16\text{ h}}&=&\dfrac{1}{T} \\ \\
    &&T&=&16\text{ h}}
    \end{array}\)
  16. \(\begin{array}{rrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{E}&-&\dfrac{1}{F}&=&\dfrac{1}{T} \\ \\
    \dfrac{1}{3}&-&\dfrac{1}{5}&=&\dfrac{1}{T} \\ \\
    \dfrac{5}{15}&-&\dfrac{3}{15}&=&\dfrac{1}{T} \\ \\
    &&\dfrac{2}{15\text{ min}}&=&\dfrac{1}{T} \\ \\
    &&\therefore T&=&\dfrac{15\text{ min}}{2}=7.5\text{ min}
    \end{array}\)
  17. \(\begin{array}{rrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{\text{full}}&-&\dfrac{1}{\text{empty}}&=&\dfrac{1}{2 T} \\ \\
    \dfrac{1}{10\text{ h}}&-&\dfrac{1}{15\text{ h}}&=&\dfrac{1}{2 T} \\ \\
    \dfrac{3}{30\text{ h}}&-&\dfrac{2}{30\text{ h}}&=&\dfrac{1}{2 T} \\ \\
    &&\dfrac{1}{30\text{ h}}&=&\dfrac{1}{2 T} \\ \\
    &&2T&=&30\text{ h} \\ \\
    &&T&=&\dfrac{30\text{ h}}{2} \\ \\
    &&T&=&15\text{ h}
    \end{array}\)
  18. \(\begin{array}{rrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{\text{full}}&-&\dfrac{1}{\text{empty}}&=&\dfrac{3}{4T} \\ \\
    \dfrac{1}{6\text{ min}}&-&\dfrac{1}{8\text{ min}}&=&\dfrac{3}{4T} \\ \\
    \dfrac{4}{24\text{ min}}&-&\dfrac{3}{24\text{ min}}&=&\dfrac{3}{4T} \\ \\
    &&\therefore \dfrac{1}{24\text{ min}}&=&\dfrac{3}{4T} \\ \\
    &&T&=&\dfrac{3}{4}(24\text{ min}) \\ \\
    &&T&=&18\text{ min}
    \end{array}\)
  19. \(\begin{array}{rrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{H}&+&\dfrac{1}{C}&=&\dfrac{1}{T} \\ \\
    \dfrac{1}{H}&+&\dfrac{1}{3.5\text{ min}}&=&\dfrac{1}{2.1\text{ min}} \\ \\
    &&\dfrac{1}{H}&=&\dfrac{1}{2.1\text{ min}}-\dfrac{1}{3.5\text{ min}} \\ \\
    &&\dfrac{1}{H}&=&\dfrac{50}{105\text{ min}}-\dfrac{30}{105\text{ min}} \\ \\
    &&\dfrac{1}{H}&=&\dfrac{20}{105\text{ min}} \\ \\
    &&\dfrac{1}{H}&=&\dfrac{4}{21\text{ min}} \\ \\
    &&H&=&\dfrac{21}{4}\text{ min} \\ \\
    &&H&=&5.25 \text{ min}
    \end{array}\)
  20. \(\begin{array}{rrcrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{1}{A}&+&\dfrac{1}{B}&=&\dfrac{1}{T} \\ \\
    \dfrac{1}{4.5\text{ h}}&+&\dfrac{1}{B}&=&\dfrac{1}{2\text{ h}} \\ \\
    &&\dfrac{1}{B}&=&\dfrac{1}{2\text{ h}}-\dfrac{1}{4.5\text{ h}} \\ \\
    &&\dfrac{1}{B}&=&\dfrac{9}{18\text{ h}}-\dfrac{4}{18\text{ h}} \\ \\
    &&\dfrac{1}{B}&=&\dfrac{5}{18\text{ h}} \\ \\
    &&B&=&\dfrac{18\text{ h}}{5} \\ \\
    &&B&=&3.6\text{ h}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.