Answer Key 8.6
[latexpage]
- \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&5(2)&& \\ \\
2(m&-&1)&=&5(8) \\
2m&-&2&=&40 \\
&+&2&&+2 \\
\midrule
&&\dfrac{2m}{2}&=&\dfrac{42}{2} \\ \\
&&m&=&21
\end{array}\) - \(\begin{array}{rrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&2(x&-&8) \\ \\
8(x&-&8)&=&\phantom{+}2(8) \\
8x&-&64&=&\phantom{+}16 \\
&+&64&&+64 \\
\midrule
&&\dfrac{8x}{8}&=&\phantom{+}\dfrac{80}{8} \\ \\
&&x&=&\phantom{+}10
\end{array}\) - \(\begin{array}{rrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&9(p&-&4) \\ \\
2(p&-&4)&=&9(10) \\
2p&-&8&=&90 \\
&+&8&&+8 \\
\midrule
&&\dfrac{2p}{2}&=&\dfrac{98}{2} \\ \\
&&p&=&49
\end{array}\) - \(\begin{array}{rllll}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&9(n&+&2) \\ \\
9(9)&=&3(n&+&2) \\
81&=&3n&+&6 \\
-6&&&-&6 \\
\midrule
\dfrac{75}{3}&=&\dfrac{3n}{3}&& \\ \\
n&=&25&&
\end{array}\) - \(\begin{array}{rrlrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&10(a&+&2) \\ \\
3(a&+&2)&=&10(a) \\
3a&+&6&=&10a \\
-3a&&&&-3a \\
\midrule
&&\dfrac{6}{7}&=&\dfrac{7a}{7} \\ \\
&&a&=&\dfrac{6}{7}
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\ \\
\text{LCD}&=&3(4)&&&& \\ \\
4(x&+&1)&=&3(x&+&3) \\
4x&+&4&=&3x&+&9 \\
-3x&-&4&&-3x&-&4 \\
\midrule
&&x&=&5&&
\end{array}\) - \(\begin{array}{rrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&3(p&+&4)&& \\ \\
2(3)&=&(p&+&4)(p&+&5) \\
6&=&p^2&+&9p&+&20 \\
-6&&&&&-&6 \\
\midrule
0&=&p^2&+&9p&+&14 \\
0&=&(p&+&7)(p&+&2) \\ \\
p&=&-2,&-7&&& \\
\end{array}\) - \(\begin{array}{rrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&10(n&+&1)&& \\ \\
5(10)&=&(n&-&4)(n&+&1) \\
50&=&n^2&-&3n&-&4 \\
-50&&&&&-&50 \\
\midrule
0&=&n^2&-&3n&-&54 \\
0&=&(n&-&9)(n&+&6) \\ \\
n&=&9,&-6&&&
\end{array}\) - \(\begin{array}{rrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&5(x&-&2)&& \\ \\
(x&+&5)(x&-&2)&=&5(6) \\
x^2&+&3x&-&10&=&\phantom{-}30 \\
&&&-&30&&-30 \\
\midrule
x^2&+&3x&-&40&=&0 \\
(x&-&5)(x&+&8)&=&0 \\ \\
&&&&x&=&5, -7
\end{array}\) - \(\begin{array}{rrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&5(x&-&3)&& \\ \\
20&=&(x&-&3)(x&+&5) \\
20&=&x^2&+&2x&-&15 \\
-20&&&&&-&20 \\
\midrule
0&=&x^2&+&2x&-&35 \\
0&=&(x&-&5)(x&+&7) \\ \\
x&=&5,&-7&&&
\end{array}\) - \(\begin{array}{rrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&4(m&-&4)&& \\ \\
(m&+&3)(m&-&4)&=&4(11) \\
m^2&-&m&-&12&=&\phantom{-}44 \\
&&&-&44&&-44 \\
\midrule
(m^2&-&m&-&56)&=&0 \\
(m&-&8)(m&+&7)&=&0 \\ \\
&&&&m&=&8, -7
\end{array}\) - \(\begin{array}{rrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&8(x&-&1)&& \\ \\
(x&-&5)(x&-&1)&=&4(8) \\
x^2&-&6x&+&5&=&\phantom{-}32 \\
&&&-&32&&-32 \\
\midrule
x^2&-&6x&-&27&=&0 \\
(x&-&9)(x&+&3)&=&0 \\ \\
&&&&x&=&9, -3
\end{array}\)