Answer Key 7.8
[latexpage]
- \(\begin{array}{rr}
\\ \\
\begin{array}{rrrrr}
k&-&7&=&0 \\
&+&7&&+7 \\
\midrule
&&k&=&7
\end{array}
&\hspace{0.25in}
\begin{array}{rrrrr}
k&+&2&=&0 \\
&-&2&&-2 \\
\midrule
&&k&=&-2
\end{array}
\end{array}\) - \(\begin{array}{rr}
\\ \\
\begin{array}{rrrrr}
a&+&4&=&0 \\
&-&4&&-4 \\
\midrule
&&a&=&-4
\end{array}
&\hspace{0.25in}
\begin{array}{rrrrr}
a&-&3&=&0 \\
&+&3&&+3 \\
\midrule
&&a&=&3
\end{array}
\end{array}\) - \(\begin{array}{rr}
\\ \\
\begin{array}{rrrrr}
x&-&1&=&0 \\
&+&1&&+1 \\
\midrule
&&x&=&1
\end{array}
&\hspace{0.25in}
\begin{array}{rrrrr}
x&+&4&=&0 \\
&-&4&&-4 \\
\midrule
&&x&=&-4
\end{array}
\end{array}\) - \(\begin{array}{rr}
\\ \\
\begin{array}{rrrrr}
\\ \\ \\
2x&+&5&=&0 \\
&-&5&&-5 \\
\midrule
&&\dfrac{2x}{2}&=&\dfrac{-5}{2} \\ \\
&&x&=&-\dfrac{5}{2}
\end{array}
&\hspace{0.25in}
\begin{array}{rrrrr}
x&-&7&=&0 \\
&+&7&&+7 \\
\midrule
&&x&=&7
\end{array}
\end{array}\) - \(\begin{array}{rrr}
\\ \\ \\ \\
6(x^2-25)&=&0 \\
6(x-5)(x+5)&=&0 \\ \\
x&=&5 \\
x&=&-5
\end{array}\) - \(\begin{array}{rrr}
\\ \\ \\
(p+8)(p-4)&=&0 \\ \\
p&=&-8 \\
p&=&4
\end{array}\) - \(\begin{array}{rrr}
\\ \\ \\ \\
2(n^2+5n-14)&=&0 \\
2(n+7)(n-2)&=&0 \\ \\
n&=&-7 \\
n&=&2
\end{array}\) - \(\begin{array}{rrr}
\\ \\ \\
(m-6)(m+5)&=&0 \\ \\
m&=&6 \\
m&=&-5
\end{array}\) - \(\begin{array}{rrr}
\\ \\ \\ \\
(x+3)(7x+5)&=&0 \\ \\
x&=&-3 \\
x&=&-\dfrac{5}{7}
\end{array}\) - \(\begin{array}{rrr}
\\ \\ \\ \\
(2b+1)(b-2)&=&0 \\ \\
b&=&-\dfrac{1}{2} \\ \\
b&=&2
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\ \\ \\
x^2&-&4x&-&8&=&-8 \\
&&&+&8&&+8 \\
\midrule
&&x^2&-&4x&=&0 \\
&&x(x&-&4)&=&0 \\ \\
&&&&x&=&0 \\
&&&&x&=&4
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\ \\ \\
v^2&-&8v&-&3&=&-3 \\
&&&+&3&&+3 \\
\midrule
&&v^2&-&8v&=&0 \\
&&v(v&-&8)&=&0 \\ \\
&&&&v&=&0 \\
&&&&v&=&8
\end{array}\) - \(\begin{array}{rrrrrrrr}
\\ \\ \\ \\ \\ \\
&x^2&-&5x&-&1&=&-5 \\
&&&&+&5&&+5 \\
\midrule
&x^2&-&5x&+&4&=&0 \\
(x&-&4)&(x&-&1)&=&0 \\ \\
&&&&&x&=&4 \\
&&&&&x&=&1
\end{array}\) - \(\begin{array}{rrrrrrrr}
\\ \\ \\ \\ \\ \\
&a^2&-&6a&+&6&=&-2 \\
&&&&+&2&=&+2 \\
\midrule
&a^2&-&6a&+&8&=&0 \\
(a&-&4)&(a&-&2)&=&0 \\ \\
&&&&&a&=&4 \\
&&&&&a&=&2
\end{array}\) - \(\begin{array}{rrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
&7x^2&+&17x&-&20&=&-8 \\
&&&&+&8&&+8 \\
\midrule
&7x^2&+&17x&-&12&=&0 \\
(7x&-&4)&(x&+&3)&=&0 \\ \\
&&&&&x&=&\dfrac{4}{7} \\ \\
&&&&&x&=&-3
\end{array}\) - \(\begin{array}{rrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
&4n^2&-&13n&+&8&=&5 \\
&&&&-&5&&-5 \\
\midrule
&4n^2&-&13n&+&3&=&0 \\
(4n&-&1)&(n&-&3)&=&0 \\ \\
&&&&&n&=&\dfrac{1}{4} \\ \\
&&&&&n&=&3
\end{array}\) - \(\begin{array}{rrrrrrrr}
\\ \\ \\ \\ \\ \\
&x^2&-&6x&&&=&16 \\
&&&&-&16&&-16 \\
\midrule
&x^2&-&6x&-&16&=&0 \\
(x&-&8)&(x&+&2)&=&0 \\ \\
&&&&&x&=&8 \\
&&&&&x&=&-2 \\
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\ \\ \\
7n^2&-&28n&=&0 \\
7n(n&-&4)&=&0 \\ \\
&&n&=&0 \\
&&n&=&4
\end{array}\) - \(\begin{array}{rcrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\
&4k^2&+&22k&+&23&=&6k&+&7 \\
&&-&6k&-&7&&-6k&-&7 \\
\midrule
&4k^2&+&16k&+&16&=&0&& \\
&4(k^2&+&4k&+&4)&=&0&& \\
4(k&+&2)&(k&+&2)&=&0&& \\ \\
&&&&&k&=&-2&&
\end{array}\) - \(\begin{array}{rrrrrrrrrr}
\\ \\ \\ \\ \\ \\
&a^2&+&7a&-&9&=&-3&+&6a \\
&&-&6a&+&3&&+3&-&6a \\
\midrule
&a^2&+&a&-&6&=&0&& \\
(a&+&3)&(a&-&2)&=&0&& \\ \\
&&&&&a&=&-3&& \\
&&&&&a&=&2&&
\end{array}\) - \(\begin{array}{rrrrrrrrrrrr}
\\ \\ \\ \\ \\ \\
&9x^2&-&46&+&7x&=&7x&+&8x^2&+&3 \\
&-8x^2&-&3&-&7x&&-7x&-&8x^2&-&3 \\
\midrule
&&&x^2&-&49&=&0&&&& \\
(x&-&7)&(x&+&7)&=&0&&&& \\ \\
&&&&&x&=&7&&&& \\
&&&&&x&=&-7&&&&
\end{array}\) - \(\begin{array}{rrrrrrrr}
\\ \\ \\ \\ \\ \\
&x^2&+&10x&+&30&=&6 \\
&&&&-&6&=&-6 \\
\midrule
&x^2&+&10x&+&24&=&0 \\
(x&+&6)&(x&+&4)&=&0 \\ \\
&&&&&x&=&-6 \\
&&&&&x&=&-4
\end{array}\) - \(\begin{array}{rrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
&40p^2&+&183p&-&168&=&p&+&5p^2 \\
&-5p^2&-&p&&&&-p&-&5p^2 \\
\midrule
&35p^2&+&182p&-&168&=&0&& \\
&7(5p^2&+&26p&-&24)&=&0&& \\
7(p&+&6)&(5p&-&4)&=&0&& \\ \\
&&&&&p&=&-6&& \\ \\
&&&&&p&=&\dfrac{4}{5}&&
\end{array}\) - \(\begin{array}{rcrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
&24x^2&+&11x&-&80&=&3x \\
&&-&3x&&&&-3x \\
\midrule
&24x^2&+&8x&-&80&=&0 \\
&8(3x^2&+&x&-&10)&=&0 \\
8(3x&-&5)&(x&+&2)&=&0 \\ \\
&&&&&x&=&\dfrac{5}{3} \\ \\
&&&&&x&=&-2
\end{array}\)