Answer Key 6.1
- \(4^{1+4+4}=4^9\text{ or }262,144\)
- \(4^{1+4+2}=4^7\text{ or }16,384\)
- \(2\cdot 4\cdot m^{4+2}n^{2+1}=8m^6n^3\)
- \(x^{2+1}y^{4+2}=x^3y^6\)
- \(3^{3\cdot 4}=3^{12}\text{ or }531,441\)
- \(4^{3\cdot 4}=4^{12}\text{ or }16,772,216\)
- \(2^2u^{3\cdot 2}v^{2\cdot 2}=4u^6v^4\)
- \(x^3y^3\)
- \(4^{5-3}=4^2\text{ or }16\)
- \(3^{7-3}=3^4\text{ or }81\)
- \(3^{1-1}n^{1-1}m^2=\cancel{3^0} \cancel{n^0} m^2\)
- \(4^{-1}x^{2-1}y^{4-1}=4^{-1}xy^3\)
- \((2x^{2+3}y^{4+3})^2\)
\((2x^5y^7)^2\)
\(2^2x^{5\cdot 2}y^{7\cdot 2}\)
\(4x^{10}y^{14}\) - \([2u^{2+4}v^2]^3\)
\([2u^6v^2]^3\)
\(2^3u^{6\cdot 3}v^{2\cdot 3} \Rightarrow 8u^{18}v^6\) - \([2^3x^3\div x^3]^2\)
\([2^3x^{3-3}]^2\)
\(2^{3\cdot 2}\cancel{x^0}\)
\(2^6 \text{ or }64\) - \(2a^{2+7}b^2\div b^2a^{4\cdot 2}\)
\(2a^9b^2\div b^2a^8\)
\(2a^{9-8}\cancel{b^{2-2}}\)
\(2a\) - \([2y^{17}\div 2^4x^{2\cdot 4}y^{4\cdot 4}]^3\)
\([2y^{17}\div 2^4x^8y^{16}]^3\)
\([2^{1-4}y^{17-16}x^{-8}]^3\)
\([2^{-3}yx^{-8}]^3\)
\(2^{-9}y^3x^{-24}\) - \([xy^2\cdot y^8]\div 2y^4\)
\(xy^{10}\div 2y^4\)
\(2^{-1}xy^{10-4}\)
\(2^{-1}xy^6\) - \(4x^3y^8\div 2xy^7\)
\(2x^2y\) - \(2y^3x^2\div x^4y^4\)
\(2x^{-2}y^{-1}\) - \([q^3r^2\cdot 4p^4q^4r^6]\div 2p^3\)
\(4p^4q^7r^8\div 2p^3\)
\(2pq^7r^8\) - \(4x^6y^{12}z^{10}\div x^4y^8z^8\)
\(4x^2y^4z^2\)