Answer Key 5.1
- \((-1,2)\)

- \((-4,3)\)

- \((-1,-3)\)

- \((-3,1)\)

- Parallel lines ∴ no intersection

- \((-2,-2)\)

- \((-3,1)\)

- \((1,-2)\)

- \((-3,-1)\)

- Parallel lines ∴ no intersection

- \(\begin{array}{rrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\
x&+&3y&=&-9\hspace{0.25in}&5x&+&3y&=&3 \\
-x&&&&-x\hspace{0.25in}&-5x&&&&-5x \\
\hline
\dfrac{3y}{3}&=&\dfrac{-x}{3}&-&\dfrac{9}{3}\hspace{0.25in}&\dfrac{3y}{3}&=&\dfrac{-5x}{3}&+&\dfrac{3}{3} \\ \\
y&=&-\dfrac{1}{3}x&-&3\hspace{0.25in}&y&=&-\dfrac{5}{3}x&+&1 \\ \\
(3,-4)&&&&&&&&&
\end{array}\)

- \(\begin{array}{rrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\
x&+&4y&=&-12\hspace{0.25in}&2x&+&y&=&4 \\
-x&&&&-x\hspace{0.25in}&-2x&&&&-2x \\
\hline
\dfrac{4y}{4}&=&\dfrac{-x}{4}&-&\dfrac{12}{4} \hspace{0.25in}&y&=&-2x&+&4 \\ \\
y&=&-\dfrac{1}{4}x&+&3 \hspace{0.25in}&y&=&-2x&+&4 \\ \\
(4,-4)&&&&&&&&&
\end{array}\)
