"

Answer Key 5.1

  1. \((-1,2)\)
    lines intersect at -1, 2
  2. \((-4,3)\)
    lines intersect at -4, 3
  3. \((-1,-3)\)
    lines intersect at -1, -3
  4. \((-3,1)\)
    lines intersect at -3, 1
  5. Parallel lines ∴ no intersection
    graph showing parallel lines therefore no intersection
  6. \((-2,-2)\)
    lines intersect at -2, -2
  7. \((-3,1)\)
    -3, 1
  8. \((1,-2)\)
    lines intersect at 1,-2
  9. \((-3,-1)\)
    lines intersect -3,-1
  10. Parallel lines ∴ no intersection
    graph showing parallel lines therefore no intersection
  11. \(\begin{array}{rrrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    x&+&3y&=&-9\hspace{0.25in}&5x&+&3y&=&3 \\
    -x&&&&-x\hspace{0.25in}&-5x&&&&-5x \\
    \hline
    \dfrac{3y}{3}&=&\dfrac{-x}{3}&-&\dfrac{9}{3}\hspace{0.25in}&\dfrac{3y}{3}&=&\dfrac{-5x}{3}&+&\dfrac{3}{3} \\ \\
    y&=&-\dfrac{1}{3}x&-&3\hspace{0.25in}&y&=&-\dfrac{5}{3}x&+&1 \\ \\
    (3,-4)&&&&&&&&&
    \end{array}\)
    3,-4
  12. \(\begin{array}{rrrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    x&+&4y&=&-12\hspace{0.25in}&2x&+&y&=&4 \\
    -x&&&&-x\hspace{0.25in}&-2x&&&&-2x \\
    \hline
    \dfrac{4y}{4}&=&\dfrac{-x}{4}&-&\dfrac{12}{4} \hspace{0.25in}&y&=&-2x&+&4 \\ \\
    y&=&-\dfrac{1}{4}x&+&3 \hspace{0.25in}&y&=&-2x&+&4 \\ \\
    (4,-4)&&&&&&&&&
    \end{array}\)
    lines intersect at 4,-4

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.