"

Answer Key 4.5

  1. \(L=2W-3 \text{ and } P=2L+2W \Rightarrow 54=2(2W-3)+2W\)
  2. \(L=2W-8 \text{ and } P=2L+2W \Rightarrow 64=2(2W-8)+2W\)
  3. \(L=2W+4 \text{ and } P=2L+2W \Rightarrow 32=2(2W+4)+2W\)
  4. \(A_1=2A_2, A_1=10^{\circ}+A_3, A_1+A_2+A_3=180^{\circ} \Rightarrow\)
    \(A_1+\dfrac{A_1}{2}+A_1- 10^{\circ}=180^{\circ}\)
  5. \(A_1=\dfrac{1}{2}A_2, A_1=20^{\circ}+A_3, A_1+A_2+A_3=180^{\circ} \Rightarrow\)
    \(A_1+2A_1+A_1-20^{\circ}=180^{\circ}\)
  6. \(A_1+A_2=\dfrac{1}{2}A_3, A_1+A_2+A_3=180^{\circ} \Rightarrow\)
    \(\dfrac{3}{2}A_3=180^{\circ}\hspace{0.34in} A_1 \text{ and } A_2?\)
  7. \(x_1+x_2=140, x_1=5x_2 \Rightarrow 5x_2+x_2=140\)
  8. \(x_1+x_2=48, x_2=5+x_1 \Rightarrow x_1+5+x_1=48\)
  9. \(\begin{array}{rrrrrrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    A_2&=&A_1&&&&&&&&&& \\
    A_3&=&A_1&+&12&&&&&&&& \\ \\
    A_1&+&A_2&+&A_3&&&=&180&&&& \\
    A_1&+&A_1&+&A_1&+&12&=&180&&&& \\
    &&&&&-&12&&-12&&&& \\
    \hline
    &&&&&&3A_1&=&168&&&& \\ \\
    &&&&&&A_1&=&\dfrac{168}{3}&=&56&& \\
    A_1&=&56^{\circ}&&&&&&&&&& \\
    A_2&=&56^{\circ}&&&&&&&&&& \\
    A_3&=&56^{\circ}&+&12^{\circ}&=&68^{\circ}&&&&&&
    \end{array}\)
  10. \(\begin{array}{rrrrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    A_1&=&A_2&&&&&&&& \\
    A_3&=&A_1&-&12&&&&&& \\ \\
    A_1&+&A_2&+&A_3&&&=&180&& \\
    A_1&+&A_1&+&A_1&-&12&=&180&& \\
    &&&&&+&12&&+12&& \\
    \hline
    &&&&&&3A_1&=&192&& \\ \\
    &&&&&&A_1&=&\dfrac{192}{3}&=&64 \\
    A_1&=&64^{\circ}&&&&&&&& \\
    A_2&=&64^{\circ}&&&&&&&& \\
    A_3&=&64^{\circ}&-&12^{\circ}&=&52^{\circ}&&&&
    \end{array}\)
  11. \(\begin{array}{rrlrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    A_1&=&A_2&&&&&&&& \\
    A_3&=&3A_1&&&&&&&& \\ \\
    A_1&+&A_2&+&A_3&=&180&&&& \\
    A_1&+&A_1&+&3A_1&=&180&&&& \\
    &&&&5A_1&=&180&&&& \\ \\
    &&&&A_1&=&\dfrac{180}{5}&=&36&& \\
    A_1&=&36^{\circ}&&&&&&&& \\
    A_2&=&36^{\circ}&&&&&&&& \\
    A_3&=&3(36^{\circ})&=&108^{\circ}&&&&&&
    \end{array}\)
  12. \(\begin{array}{rrrcrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    A_2&=&2A_1&&&&&&&& \\
    A_3&=&A_1&+&20&&&&&& \\ \\
    A_1&+&A_2&+&A_3&&&=&180&& \\
    A_1&+&2A_1&+&A_1&+&20&=&180&& \\
    &&&&&-&20&=&-20&& \\
    \hline
    &&&&&&4A_1&=&160&& \\ \\
    &&&&&&A_1&=&\dfrac{160}{4}&=&40 \\
    A_1&=&40^{\circ}&&&&&&&& \\
    A_2&=&2(40^{\circ})&=&80^{\circ}&&&&&& \\
    A_3&=&20^{\circ}&+&40^{\circ}&=&60^{\circ}&&&&
    \end{array}\)
  13. \(\begin{array}{rrlllrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    ^{\text{1}}L&=&W&+&15&& \\ \\
    ^{\text{2}}P&=&2L&+&2W&& \\
    150&=&2(W&+&15)&+&2W \\
    150&=&2W&+&30&+&2W \\
    -30&&&-&30&& \\
    \hline
    120&=&4W&&&& \\ \\
    W&=&\dfrac{120}{4}&=&30\text{ cm}&& \\ \\
    ^{\text{3}}L&=&30&+&15&& \\
    L&=&45\text{ cm}&&&& \\
    \end{array}\)
  14. \(\begin{array}{rrlllrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    ^{\text{1}}L&=&W&+&40&& \\ \\
    ^{\text{2}}P&=&2L&+&2W&& \\
    304&=&2(W&+&40)&+&2W \\
    304&=&2W&+&80&+&2W \\
    -80&&&-&80&& \\
    \hline
    224&=&4W&&&& \\ \\
    W&=&\dfrac{224}{4}&=&56\text{ cm}&& \\ \\
    ^{\text{3}}L&=&56&+&40&& \\
    L&=&96\text{ cm}&&&& \\
    \end{array}\)
  15. \(\begin{array}{rrlllrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    ^{\text{1}}W&=&L&-&22&& \\ \\
    ^{\text{2}}P&=&2L&+&2W&& \\
    152&=&2L&+&2(L&-&22) \\
    152&=&2L&+&2L&-&44 \\
    +44&&&&&+&44 \\
    \hline
    196&=&4L&&&& \\ \\
    L&=&\dfrac{196}{4}&=&49\text{ m}&& \\ \\
    ^{\text{3}}W&=&49&-&22&& \\
    L&=&27\text{ m}&&&& \\
    \end{array}\)
  16. \(\begin{array}{rrlllrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    ^{\text{1}}W&=&L&-&26&& \\ \\
    ^{\text{2}}P&=&2L&+&2W&& \\
    280&=&2L&+&2(L&-&26) \\
    280&=&2L&+&2L&-&52 \\
    +52&&&&&+&52 \\
    \hline
    332&=&4L&&&& \\ \\
    L&=&\dfrac{332}{4}&=&83\text{ m}&& \\ \\
    ^{\text{3}}W&=&83&-&26&& \\
    L&=&57\text{ m}&&&& \\
    \end{array}\)
  17. \(\begin{array}{rrrrrrrr}
    \\ \\ \\ \\ \\
    x&+&2x&=&12&&& \\
    &&3x&=&12&&& \\ \\
    &&x&=&\dfrac{12}{3}&=&4\text{ cm}& \\ \\
    &\therefore &2x&=&2(4)&=&8\text{ cm}& \\
    \end{array}\)\(\text{Pieces are 4 cm and 8 cm}\)
  18. \(\begin{array}{rrrrrrrrcrr}
    \\ \\ \\ \\ \\ \\ \\
    x&+&x&+&2&=&30&&&& \\
    &&&-&2&&-2&&&& \\
    \hline
    &&&&2x&=&28&&&& \\ \\
    &&&&x&=&\dfrac{28}{2}&=&14\text{ m}&& \\ \\
    &\therefore &x&+&2&=&14&+&2&=&16 \text{ m}
    \end{array}\)\(\text{Pieces are 14 m and 16 m}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.