Answer Key 4.3
- \(\begin{array}{rrcrrr}
-3& <& x& <& 3& \hspace{0.25in} \text{Interval notation: } (-3,3)
\end{array}\)
- \(\begin{array}{rrcrrr}
-8& \le& x& \le& 8 & \hspace{0.25in} \text{Interval notation: } [-8,8]
\end{array}\)
- \(\begin{array}{rrcrrr}
\\ \\ \\
\dfrac{-6}{2}&<&\dfrac{2x}{2}&<&\dfrac{6}{2}& \\ \\
-3&<&x&<&3& \hspace{0.25in} \text{Interval notation: } (-3,3)
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\
-4&<&x&+&3&<&4& \\
-3&&&-&3&&-3& \\
\hline
-7&<&&x&&<&1& \hspace{0.25in} \text{Interval notation: } (-7,1)
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\
-6&<&x&-&2&<&6& \\
+2&&&+&2&&+2& \\
\hline
-4&<&&x&&<&8& \hspace{0.25in} \text{Interval notation: } (-4,8)
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\
-12&<&x&-&8&<&12& \\
+8&&&+&8&&+8& \\
\hline
-4&<&&x&&<&20& \hspace{0.25in} \text{Interval notation: } (-4,20)
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\
-3&<&x&-&7&<&3& \\
+7&&&+&7&&+7& \\
\hline
4&<&&x&&<&10& \hspace{0.25in} \text{Interval notation: } (4,10)
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\
-4&\le &x&+&3&\le &4& \\
-3&&&-&3&&-3& \\
\hline
-7&\le &&x&&\le &1& \hspace{0.25in} \text{Interval notation: } [-7,1]
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\ \\ \\ \\
-9&<&3x&-&2&<&9& \\
+2&&&+&2&&+2& \\
\hline
\dfrac{-7}{3}&<&&\dfrac{3x}{3}&&<&\dfrac{11}{3}&\\ \\
-\dfrac{7}{3}&<&&x&&<&\dfrac{11}{3}& \hspace{0.25in} \text{Interval notation: } (-\dfrac{7}{3},\dfrac{11}{3})
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\ \\ \\ \\
-9&<&2x&+&5&<&9& \\
-5&&&-&5&&-5& \\
\hline
\dfrac{-14}{2}&<&&\dfrac{2x}{2}&&<&\dfrac{4}{2}&\\ \\
-7&<&&x&&<&2& \hspace{0.25in} \text{Interval notation: } (-7,2)
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
1&+&2|x&-&1|&\le & 9 \\
-1&&&&&&-1 \\
\hline
&&\dfrac{2}{2}|x&-&1|&\le & \dfrac{8}{2} \\ \\
&&|x&-&1|&\le & 4 \\
-4&\le &x&-&1&\le & 4 \\
+1&&&+&1&\le &+1 \\
\hline
-3&\le &&x&&\le &5& \hspace{0.25in} \text{Interval notation: } [-3,5]
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
10&-&3|x&-&2|&\ge & 4 \\
-10&&&&&&-10 \\
\hline
&&\dfrac{-3}{-3}|x&-&2|&\ge & \dfrac{-6}{-3} \\ \\
&&|x&-&2|&\le & 2 \\
-2&\le &x&-&2&\le & 2 \\
+2&&&+&2&&+2 \\
\hline
0&\le &&x&&\le &4& \hspace{0.25in} \text{Interval notation: } [0,4]
\end{array}\)
- \(\begin{array}{rrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\
6&-&|2x&-&5|&>&3& \\
-6&&&&&&-6& \\
\hline
&&(-|2x&-&5|&>&-3)&(-1) \\
&&|2x&-&5|&<&3& \\
-3&<&2x&-&5&<&3& \\
+5&&&+&5&&+5& \\
\hline
\dfrac{2}{2}&<&&\dfrac{2x}{2}&&<&\dfrac{8}{2}& \\ \\
1&<&&x&&<&4& \hspace{0.25in} \text{Interval notation: } (1,4)&
\end{array}\)
- \(\begin{array}{rrcrrrrrr}
x& <&-5&\text{or}&5&<&x& \hspace{0.25in} \text{Interval notation: } (-\infty,-5)\cup (5, \infty)
\end{array}\)
- \(\begin{array}{rrrrrrrr}
\\ \\ \\
\dfrac{3x}{3}&<&\dfrac{-5}{3}&\text{or}&\dfrac{5}{3}&<&\dfrac{3x}{3}& \\ \\
x&<&-\dfrac{5}{3}&\text{or}&\dfrac{5}{3}&<&x&\text{Interval notation: } (-\infty, -\dfrac{5}{3})\cup (\dfrac{5}{3}, \infty) \\
\end{array}\)
- \(\begin{array}{rrrrrrrrrrrr}
\\ \\
x&-&4&<&-5&\text{or}&5&<&x&-&4& \\
&+&4&&+4&\text{or}&+4&&&+&4& \\
\hline
&&x&<&-1&\text{or}&9&<&x&&&\text{Interval notation: } (-\infty, -1)\cup (9, \infty)\\
\end{array}\)
- \(\begin{array}{rrrrrrrrrrrr}
\\ \\
x&+&3&<&-3&\text{or}&3&<&x&+&3& \\
&-&3&&-3&\text{or}&-3&&&-&3& \\
\hline
&&x&<&-6&\text{or}&0&<&x&&&\text{Interval notation: } (-\infty, -6)\cup (0, \infty)\\
\end{array}\)
- \(\begin{array}{rrrrrrrrrrrr}
\\ \\ \\ \\
2x&-&4&<&-6&\text{or}&6&<&2x&-&4& \\
&+&4&&+4&&+4&&&+&4& \\
\hline
&&\dfrac{2x}{2}&<&\dfrac{-2}{2}&&\dfrac{10}{2}&<&\dfrac{2x}{2}&&& \\ \\
&&x&<&-1&\text{or}&5&<&x&&&\text{Interval notation: } (-\infty, -1)\cup (5, \infty)\\
\end{array}\)
- \(\begin{array}{rrrrrrrrrrrr}
\\ \\ \\
x&-&5&<&-3&\text{or}&3&<&x&-&5& \\
&+&5&&+5&&+5&&&+&5& \\
\hline
&&x&<&2&\text{or}&8&<&x&&&\text{Interval notation: } (-\infty, 2)\cup (8, \infty)\\
\end{array}\) HAVE TO ADD 2 2 etc.

- \(\begin{array}{rrrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\
3&-|2&-&x|&<&1&&&&&\\
-3&&&&&-3&&&&&\\
\hline
&(-|2&-&x|&<&-2)&(-1)&&&&\\
&|2&-&x|&>&2&&&&&\\ \\
2&-&x&<&-2&\text{or}&2&<&2&-&x\\
-2&&&&-2&&-2&&-2&&\\
\hline
&&-x&<&-4&\text{or}&0&<&-x&&\\
&&x&>&4&\text{or}&0&>&x&&\text{Interval notation: } (-\infty, 0)\cup (4, \infty)\\
\end{array}\)
- \(\begin{array}{rrrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\
4&+&3|x&-&1|&<&10&&&&\\
-4&&&&&&-4&&&&\\
\hline
&&\dfrac{3}{3}|x&-&1|&<&\dfrac{6}{3}&&&&\\ \\
&&|x&-&1|&<&2&&&&\\ \\
x&-&1&<&-2&\text{or}&2&<&x&-&1\\
&+&1&&+1&&+1&&&+&1\\
\hline
&&x&<&-1&\text{or}&3&<&x&&\text{Interval notation: } (-\infty, -1)\cup (3, \infty)\\
\end{array}\)
- \(\begin{array}{rrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
3&-&2|3x&-&1|&\ge &-7& \\
-3&&&&&&-3& \\
\hline
&&\dfrac{-2}{-2}|3x&-&1|&\ge &\dfrac{-10}{-2}& \\ \\
&&|3x&-&1|&\le &5& \\ \\ \\
-5&\le &3x&-&1& \le & 5& \\
+1&&&+&1&&+1& \\
\hline
\dfrac{-4}{3}&\le &&\dfrac{3x}{3}&& \le & \dfrac{6}{3}& \\ \\
-\dfrac{4}{3}&\le &&x&& \le & 2 &\text{Interval notation: } [-\dfrac{4}{3}, 2]
\end{array}\)
- \(\begin{array}{rrrrrcrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
3&-&2|x&-&5|&\le & -15&&&& \\
-3&&&&&&-3&&&& \\
\hline
&&\dfrac{-2}{-2}|x&-&5|&\le & \dfrac{-18}{-2}&&&& \\ \\
&&|x&-&5|&\ge & 9&&&& \\ \\
x&-&5&\le &-9&\text{or}&9&\le &x&-&5 \\
&+&5&&+5&&+5&&&+&5 \\
\hline
&&x&\le &-4&\text{or}&14&\le &x&&\text{Interval notation: } (-\infty, -4]\cup [14, \infty)
\end{array}\)![(- ifninity, -4] or [14, infinity)](https://kpu.pressbooks.pub/app/uploads/sites/82/2020/02/Chapter4.3_Key23-300x54.jpg)
- \(\begin{array}{rrcrrcrrrll}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
4&-&6|-6&-&3x|&\le & -5&&&& \\
-4&&&&&&-4&&&& \\
\hline
&&\dfrac{-6}{-6}|-6&-&3x|&\le &\dfrac{-9}{-6}&&&& \\ \\
&&|-6&-&3x|&\ge &\dfrac{3}{2}&&&& \\ \\ \\
-6&-&3x&\le &-\dfrac{3}{2}&\text{or}&\dfrac{3}{2}&\le &-6&-\phantom{0}3x& \\ \\
+6&&&&+6&&+6&&+6&& \\
\hline
&&\dfrac{-3x}{-3}&\le &\dfrac{\dfrac{9}{2}}{-3}&&\dfrac{\dfrac{15}{2}}{-3}&\le &\dfrac{-3x}{-3}&& \\ \\
&&x&\ge &-\dfrac{3}{2}&\text{or}&-\dfrac{5}{2}&\ge &x&\text{Interval notation: } (-\infty, -\dfrac{5}{2}]\cup [-\dfrac{3}{2}, \infty)& \\
\end{array}\)
- \(\begin{array}{rrrcrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
-2&-&3|4&-&2x|&\ge & -8& \\
+2&&&&&&+2& \\
\hline
&&\dfrac{-3}{-3}|4&-&2x|&\ge &\dfrac{-6}{-3}& \\ \\
&&|4&-&2x|&\le &2& \\ \\ \\
-2&\le &4&-&2x&\le &2& \\
-4&&-4&&&&-4& \\
\hline
\dfrac{-6}{-2}&\le &&\dfrac{-2x}{-2}&&\le &\dfrac{-2}{-2}& \\ \\
3&\ge &&x&&\ge &1&\text{Interval notation: } [1,3]
\end{array}\)![[1,3]](https://kpu.pressbooks.pub/app/uploads/sites/82/2020/02/Chapter4.3_Key25-300x46.jpg)
- \(\begin{array}{rrrcrcrr}
\\ \\ \\ \\ \\ \\ \\
-3&-&2|4x&-&5|&\ge & 1& \\
+3&&&&&&+3& \\
\hline
&&\dfrac{-2}{-2}|4x&-&5|&\ge &\dfrac{4}{-2}& \\ \\
&&|4x&-&5|&\le &-2& \\ \\
&&&&&\uparrow&& \\
&&&&&\text{Cannot be true.}&&\text{No solution.} \\
\end{array}\)
- \(\begin{array}{rrrrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
4&-&5|-2x&-&7|&<&-1&&&&& \\
-4&&&&&&-4&&&&& \\
\hline
&&\dfrac{-5}{-5}|-2x&-&7|&<&\dfrac{-5}{-5}&&&&& \\ \\
&&|-2x&-&7|&>&1&&&&& \\ \\ \\
-2x&-&7&<&-1&\text{or}&1&<&-2x&-&7& \\
&+&7&&+7&&+7&&&+&7& \\
\hline
&&\dfrac{-2x}{-2}&<&\dfrac{6}{-2}&&\dfrac{8}{-2}&<&\dfrac{-2x}{-2}&&& \\ \\
&&x&>&-3&\text{or}&-4&>&x&&&\text{Interval notation: } (-\infty, -4)\cup (-3, \infty)
\end{array}\)
- \(\begin{array}{rrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
-2&+&3|5&-&x|& \le& 4& \\
+2&&&&&&+2& \\
\hline
&&\dfrac{3}{3}|5&-&x|& \le&\dfrac{6}{3}& \\ \\
&&|5&-&x|& \le&2& \\ \\
-2&\le &5&-&x&\le &2& \\
-5&&-5&&&&-5& \\
\hline
(-7&\le &&-x&&\le &-3)&(-1) \\
7&\ge &&x&&\ge &3&\text{Interval notation: } [3,7]\\
\end{array}\)![[3,7]](https://kpu.pressbooks.pub/app/uploads/sites/82/2020/02/Chapter4.3_Key28-300x58.jpg)
- \(\begin{array}{rrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
3&-&2|4x&-&5|&\ge &1& \\
-3&&&&&&-3& \\
\hline
&&\dfrac{-2}{-2}|4x&-&5|&\ge &\dfrac{-2}{-2}& \\ \\
&&|4x&-&5|&\le &1& \\ \\
-1&\le &4x&-&5&\le &1& \\
+5&&&+&5&&+5& \\
\hline
\dfrac{4}{4}&\le &&\dfrac{4x}{4}&&\le &\dfrac{6}{4}& \\ \\
1&\le &&x&&\le &\dfrac{3}{2}&\text{Interval notation: } [1, \dfrac{3}{2}]
\end{array}\)![[2/2, 3/2]](https://kpu.pressbooks.pub/app/uploads/sites/82/2020/02/Chapter4.3_Key29-300x65.jpg)
- \(\begin{array}{rrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
-2&-&3|-3x&-&5|&\ge &-5& \\
+2&&&&&&+2& \\
\hline
&&\dfrac{-3}{-3}|-3x&-&5|&\ge &\dfrac{-3}{-3}& \\ \\
&&|-3x&-&5|&\le &1& \\ \\
-1&\le &-3x&-&5&\le &1& \\
+5&&&+&5&&+5& \\
\hline
\dfrac{4}{-3}&\le &&\dfrac{-3x}{-3}&&\le &\dfrac{6}{-3}& \\ \\
-\dfrac{4}{3}&\ge &&x&&\ge &-2&\text{Interval notation: } [-2, -\dfrac{4}{3}]
\end{array}\)![[-6/3, -4/3]](https://kpu.pressbooks.pub/app/uploads/sites/82/2020/02/Chapter4.3_Key30-300x80.jpg)
- \(\begin{array}{rrrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
-5&-&2|3x&-&6|&<&-8&&&& \\
+5&&&&&&+5&&&& \\
\hline
&&\dfrac{-2}{-2}|3x&-&6|&<&\dfrac{-3}{-2}&&&& \\ \\
&&|3x&-&6|&>&\dfrac{3}{2}&&&& \\ \\ \\
3x&-&6&<&-\dfrac{3}{2}&\text{or}&\dfrac{3}{2}&<&3x&-&6 \\ \\
&+&6&&+6&&+6&&&+&6 \\
\hline
&&\dfrac{3x}{3}&<&\dfrac{\dfrac{9}{2}}{3}&&\dfrac{\dfrac{15}{2}}{3}&<&\dfrac{3x}{3}&& \\ \\
&&x&<&\dfrac{3}{2}&\text{or}&5&<&x&&\text{Interval notation: } (-\infty, \dfrac{3}{2})\cup (5, \infty)
\end{array}\)
- \(\begin{array}{rrrrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
6&-&3|1&-&4x|&<&-3&&&&& \\
-6&&&&&&-6&&&&& \\
\hline
&&\dfrac{-3}{-3}|1&-&4x|&<&\dfrac{-9}{-3}&&&&& \\ \\
&&|1&-&4x|&>&3&&&&& \\ \\
1&-&4x&<&-3&\text{or}&1&-&4x&>&3& \\
-1&&&&-1&&-1&&&&-1& \\
\hline
&&-4x&<&-4&&&&-4x&>&2& \\
&&x&>&1&&\text{or}&&x&<&-\dfrac{1}{2}&\text{Interval notation: } (-\infty, -\dfrac{1}{2})\cup (1, \infty)
\end{array}\)
- \(\begin{array}{rrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
4&-&4|-2x&+&6|&>&-4& \\
-4&&&&&&-4& \\
\hline
&&\dfrac{-4}{-4}|-2x&+&6|&>&\dfrac{-8}{-4}& \\ \\
&&|-2x&+&6|&<&2& \\ \\
-2&<&-2x&+&6&<&2& \\
-6&&&-&6&&-6& \\
\hline
\dfrac{-8}{-2}&<&&\dfrac{-2x}{-2}&&<&\dfrac{-4}{-2}& \\ \\
4&>&&x&&>&2&\text{Interval notation: } (2,4)
\end{array}\)