Answer Key 4.2
- \(\begin{array}{rrrrrrrr}
\\ \\
(3)&(\dfrac{n}{3}&<&3)&\text{or}&\dfrac{-5n}{-5}&<&\dfrac{-10}{-5} \\ \\
&n&<&9&\text{or}&n&>&2
\end{array}\)\(\text{Interval notation: } (-\infty, \infty)\)
- \(\begin{array}{rrrrrrrrr}
\\ \\
\dfrac{6m}{6}&\ge & \dfrac{-24}{6}& \text{or}&m&-&7&<&-12 \\
&&&&&+&7&<&+7 \\
\hline
m&\ge & -4& \text{or}&&&m&<&-5
\end{array}\)\(\text{Interval notation: } (-\infty, -5) \cup [-4, \infty)\)
- \(\begin{array}{rrrrrrrrr}
\\ \\
x&+&7& \ge& 12& \text{or}& \dfrac{9x}{9}&<&\dfrac{-45}{9} \\
&-&7&&-7&&&& \\
\hline
&&x& \ge&5& \text{or}&x&<&-5
\end{array}\)\(\text{Interval notation: } (-\infty, -5) \cup [5, \infty)\)
- \(\begin{array}{rrrrrrrrr}
\\ \\
\dfrac{10r}{10}&>&\dfrac{0}{10}&\text{or}&r&-&5&<&-12 \\
&&&&&+&5&&+5 \\
\hline
r&>&0&\text{or}&&&r&<&-7 \\
\end{array}\)\(\text{Interval notation: } (-\infty, -7) \cup (0, \infty)\)
- \(\begin{array}{rrrrrrrrr}
\\ \\
x&-&6&<&-13&\text{or}&\dfrac{6x}{6}&<&\dfrac{-60}{6} \\
&+&6&&+6&&&& \\
\hline
&&x&<&-7&&x&<&-10 \\
\end{array}\)\(\text{Interval notation: } (-\infty, -7)\)
- \(\begin{array}{rrrrrrrrr}
\\ \\
9&+&n&<&2&\text{or}&\dfrac{5n}{5}&>&\dfrac{40}{5} \\
-9&&&&-9&&&& \\
\hline
&&n&<&-7&\text{or}&n&>&8 \\
\end{array}\)\(\text{Interval notation: } (-\infty, -7)\cup (8, \infty)\)
- \(\begin{array}{rrrrcrrrrr}
\\ \\
(8)&(\dfrac{v}{8}&>&-1)&\text{and}&v&-&2&<&1 \\
&&&&&&+&2&&+2 \\
\hline
&v&>&-8&\text{and}&&&v&<&3 \\ \\
&&-8&<&v&<&3&&&
\end{array}\)\(\text{Interval notation: } (-8, 3)\)
- \(\begin{array}{rrrcrrrr}
\\ \\ \\
\dfrac{-9x}{-9}&<&\dfrac{63}{-9}&\text{and}&(\dfrac{x}{4}&<&1)&(4) \\ \\
x&>&-7&\text{and}&x&<&4& \\ \\
&-7&<&x&<&4&&
\end{array}\)\(\text{Interval notation: } (-7, 4)\)
- \(\begin{array}{rrrrrrrrr}
\\ \\
-8&+&b&<&-3&\text{and}&\dfrac{4b}{4}&<&\dfrac{20}{4} \\
+8&&&&+8&&&& \\
\hline
&&b&<&5&&b&<&5 \\
\end{array}\)\(\text{Interval notation: } (-\infty, 5)\)
- \(\begin{array}{rrrcrrrr}
\\ \\ \\ \\
\dfrac{-6n}{-6}&<&\dfrac{12}{-6}&\text{and}&(\dfrac{n}{3}&<&2)&(3) \\ \\
n&>&-2&\text{and}&n&<&6& \\ \\
&-2&<&n&<&6&&
\end{array}\)\(\text{Interval notation: } (-2, 6)\)
- \(\begin{array}{rrrrrcrrr}
\\ \\ \\
a&+&10&\ge &3&\text{and}&\dfrac{8a}{8}&<&\dfrac{48}{8} \\
&-&10&&-10&&&& \\
\hline
&&a&\ge &-7&\text{and}&a&<&6 \\ \\
&&&-7&\le &a&<&6&
\end{array}\)\(\text{Interval notation: } [-7, 6)\)
- \(\begin{array}{rrrrrcrrr}
\\ \\
-6&+&v&\ge &0&\text{and}&\dfrac{2v}{2}&>&\dfrac{4}{2} \\
+6&&&&+6&&&& \\
\hline
&&v&\ge &6&\text{and}&v&>&2
\end{array}\)\(\text{Interval notation: } [6, \infty)\)
- \(\begin{array}{rrrcrrr}
\\ \\
3&<&9&+&x&<&7 \\
-9&&-9&&&&-9 \\
\hline
-6&<&&x&&<&-2 \\
\end{array}\)\(\text{Interval notation: } (-6, -2)\)
- \(\begin{array}{rrrrrr}
\\ \\
(0&\ge & \dfrac{x}{9} & \ge & -1)&(9) \\ \\
0&\ge & x& \ge & -9& \\ \\
\end{array}\)\(\text{Interval notation: } [-9, 0]\)![Numberline [-9,0]](https://kpu.pressbooks.pub/app/uploads/sites/82/2020/02/Chapter4.2_Key14-300x60.jpg)
- \(\begin{array}{rrrcrrr}
\\ \\ \\
11&<&8&+&k&<&12 \\
-8&&-8&&&&-8 \\
\hline
3&<&&k&&<&4 \\ \\
\end{array}\)\(\text{Interval notation: } (3, 4)\)
- \(\begin{array}{rrrcrrr}
\\ \\ \\
-11&<&n&-&9&<&-5 \\
+9&&&+&9&&+9 \\
\hline
-2&<&&n&&<&4 \\ \\
\end{array}\)\(\text{Interval notation: } (-2, 4)\)
- \(\begin{array}{rrrcrrr}
\\ \\ \\
-3&<&x&-&1&<&1 \\
+1&&&+&1&&+1 \\
\hline
-2&<&&x&&<&2 \\ \\
\end{array}\)\(\text{Interval notation: } (-2, 2)\)
- \(\begin{array}{rrrrrr}
\\ \\ \\
(-1&< & \dfrac{p}{8} & <& 0)&(8) \\ \\
-8&< & p& < & 0& \\ \\
\end{array}\)\(\text{Interval notation: } (-8, 0)\)
- \(\begin{array}{rrrcrrr}
\\ \\ \\ \\ \\
-4&<&8&-&3m&<&11 \\
-8&&-8&&&&-8 \\
\hline
\dfrac{-12}{-3}&<&&\dfrac{-3m}{-3}&&<&\dfrac{3}{-3} \\ \\
4&>&&m&&>&-1
\end{array}\)\(\text{Interval notation: } (-1, 4)\)
- \(\begin{array}{rrrrrcrrrrr}
\\ \\ \\ \\ \\
3&+&7r&>&59&\text{or} &-6r&-&3&>&33 \\
-3&&&&-3&&&+&3&>&+3 \\
\hline
&&\dfrac{7r}{7}&>&\dfrac{56}{7}&\text{or} &&&\dfrac{-6r}{-6}&>&\dfrac{36}{-6} \\ \\
&&r&>&8&\text{or} &&&r&<&-6
\end{array}\)\(\text{Interval notation: } (-\infty, -6) \cup (8, \infty)\)
- \(\begin{array}{rrrcrrr}
\\ \\ \\ \\ \\
-16&<&2n&-&10&<&-2 \\
+10&&&+&10&&+10 \\
\hline
\dfrac{-6}{2}&<&&\dfrac{2n}{2}&&<&\dfrac{8}{2} \\ \\
-3&<&&n&&<&4
\end{array}\)\(\text{Interval notation: } (-3, 4)\)
- \(\begin{array}{rrrrrcrrrrr}
\\ \\ \\ \\ \\
-6&-&8x&\ge &-6&\text{or} &2&+&10x&>&82 \\
+6&&&&+6&&-2&&&>&-2 \\
\hline
&&\dfrac{-8x}{-8}&\ge&\dfrac{0}{-8}&&&&\dfrac{10x}{10}&>&\dfrac{80}{10} \\ \\
&&x&\le &0&&\text{or}&&x&>&8
\end{array}\)\(\text{Interval notation: } (-\infty, 0] \cup (8, \infty)\)
- \(\begin{array}{rrrrrcrrrrr}
\\ \\ \\ \\ \\
-5b&+&10&<&30&\text{and} &7b&+&2&<&-40 \\
&&-10&&-10&&&-&2&&-2 \\
\hline
&&\dfrac{-5b}{-5}&<&\dfrac{20}{-5}&&&&\dfrac{7b}{7}&<&\dfrac{-42}{7} \\ \\
&&b&>&-4&&\text{and}&&b&<&-6
\end{array}\)∴ \(\text{No solution}\)
- \(\begin{array}{rrrrrcrrrrr}
\\ \\ \\ \\ \\
n&+&10&\ge &15&\text{or} &4n&-&5&<&-1 \\
&-&10&&-10&&&+&5&&+5 \\
\hline
&&n&\ge&5&&&&\dfrac{4n}{4}&<&\dfrac{4}{4} \\ \\
&&n&\ge &5&&\text{or}&&n&<&1
\end{array}\)\(\text{Interval notation: } (-\infty, 1) \cup [5, \infty)\)
- \(\begin{array}{rrrrrrrcrrrrrrr}
\\ \\ \\ \\ \\
3x&-&9&<&2x&+&10&\text{and}&5&+&7x&<&10x&-&10 \\
-2x&+&9&&-2x&+&9&&-5&-&10x&&-10x&-&5 \\
\hline
&&x&<&19&&&&&&\dfrac{-3x}{-3}&<&\dfrac{-15}{-3}&& \\ \\
&&x&<&19&&&\text{and}&&&x&>&5&& \\ \\
&&&&&5&<&x&<&19&&&&&
\end{array}\)\(\text{Interval notation: } (5, 19)\)
- \(\begin{array}{rrrrrrrcrrrrrrr}
\\ \\ \\
4n&+&8&<&3n&-&6&\text{or}&10n&-&8&\ge &9&+&9n \\
-3n&-&8&&-3n&-&8&&-9n&+&8&&+8&-&9n \\
\hline
&&n&<&-14&&&\text{or}&&&n&\ge &17&& \\ \\
\end{array}\)\(\text{Interval notation: } (-\infty, -14) \cup [17, \infty)\)
- \(\begin{array}{rrrrrrrcrrrrrrr}
\\ \\ \\ \\ \\
-8&-&6v&<&8&-&8v&\text{and}&7v&+&9&<&6&+&10v \\
+8&+&8v&&+8&+&8v&&-10v&-&9&&-9&-&10v \\
\hline
&&\dfrac{2v}{2}&<&\dfrac{16}{2}&&&&&&\dfrac{-3v}{-3}&<&\dfrac{-3}{-3}&& \\ \\
&&v&<&8&&&\text{and}&&&v&>&1&& \\ \\
&&&&&1&<&v&<&8&&&&&
\end{array}\)\(\text{Interval notation: } (1, 8)\)
- \(\begin{array}{rrrrrrrcrrrrrrr}
\\ \\ \\ \\ \\
5&-&2a&\ge &2a&+&1&\text{or}&10a&-&10&\ge &9a&+&9 \\
-5&-&2a&&-2a&-&5&&-9a&+&10&&-9a&+&10 \\
\hline
&&\dfrac{-4a}{-4}&\ge &\dfrac{-4}{-4}&&&&&&a&\ge&19&& \\ \\
&&a&\le &1&&&\text{or}&&&a&\ge &19&&
\end{array}\)\(\text{Interval notation: } (-\infty, 1] \cup [19, \infty)\)
- \(\begin{array}{rrrrrrrcrrrrrrr}
\\ \\ \\ \\ \\
1&+&5k&\ge &7k&-&3&\text{or}&k&-&10&>&2k&+&10 \\
-1&-&7k&&-7k&-&1&&-2k&+&10&&-2k&+&10 \\
\hline
&&\dfrac{-2k}{-2}&\ge &\dfrac{-4}{-2}&&&&&&-k&>&20&& \\ \\
&&k&\le &2&&&\text{or}&&&k&<&-20&&
\end{array}\)\(\text{Interval notation: } (-\infty, 2]\)![Numberline (-2, negative infinity]](https://kpu.pressbooks.pub/app/uploads/sites/82/2020/02/Chapter4.2_Key29-300x70.jpg)
- \(\begin{array}{rrrrrrrcrrrrrrl}
\\ \\ \\
8&-&10r&<&8&+&4r&\text{or}&-6&+&8r&<&2&+&8r \\
-8&-&4r&&-8&-&4r&&+6&-&8r&&+6&-&8r \\
\hline
&&\dfrac{-14r}{-14}&<&\dfrac{0}{-14}&&&&&&0&<&8&\leftarrow &\text{This is always true} \\ \\
&&r&>&0&&&\text{or}&&&r&\in &\mathbb{R} &&
\end{array}\)\(\text{Interval notation: } (-\infty, \infty)\)
- \(\begin{array}{rrrrrrrcrrrrrrr}
\\ \\ \\ \\ \\
2x&+&9&\ge &10x&+&1&\text{and}&3x&-&2&<&7x&+&2 \\
-10x&-&9&&-10x&-&9&&-7x&+&2&&-7x&+&2 \\
\hline
&&\dfrac{-8x}{-8}&\ge &\dfrac{-8}{-8}&&&&&&\dfrac{-4x}{-4}&<&\dfrac{4}{-4}&& \\ \\
&&x&\le &1&&&\text{and}&&&x&>&-1&& \\ \\
&&&&&-1&<&x&\le &1&&&&&
\end{array}\)\(\text{Interval notation: } (-1, 1]\)
- \(\begin{array}{rrrrrrrcrrrrrrr}
\\ \\ \\ \\ \\
-9m&+&2&< &-10&-&6m&\text{or}&-m&+&5&\ge &10&+&4m \\
+6m&-&2&&-2&+&6m&&-4m&-&5&&-5&-&4m \\
\hline
&&\dfrac{-3m}{-3}&<&\dfrac{-12}{-3}&&&&&&\dfrac{-5m}{-5}&\ge &\dfrac{5}{-5}&& \\ \\
&&m&>&4&&&\text{or}&&&m&\le &-1&&
\end{array}\)\(\text{Interval notation: } (-\infty, -1] \cup (4, \infty)\)