"

Answer Key 4.1

  1. \((-5, \infty)\)     -5, infinity
  2. \((4, \infty)\)       4, inifinity
  3. \((-2, \infty)\)   -2, inifinity
  4. \((-\infty, 1]\)     - infinity, 1
  5. \((-\infty, 5]\)    - infinity, 5
  6. \((-5, \infty)\)     -5, inifinity
  7. \(x>-5\hspace{0.25in} (-5, \infty)\)     x > -5, -5, inifinity
  8. \(x>0\hspace{0.25in} (0, \infty)\)        (x > 0), 0, inifinity
  9. \(x\ge -3 \hspace{0.25in} [-3, \infty)\)     x > or equal to -3, (-3, inifinity)
  10. \(x\le 6 \hspace{0.25in} (-\infty, 6]\)     x < 6, - infinity, 6
  11. \(x\le -1 \hspace{0.25in} (-\infty, -1]\)     x < or equal to -1, (-1, - inifinity)
  12. \(x < 6 \hspace{0.25in} (-\infty, 6)\)      x < 6 , (-infinity, 6)
  13. \(\begin{array}{rrrl}
    \\ \\
    (\dfrac{x}{11}&\ge &10)&(11) \\ \\
    x& \ge & 110 &
    \end{array}\)\(\text{Interval notation: } [110,\infty)\)  Number line
  14. \(\begin{array}{rrrl}
    \\ \\
    (-2 &\le & \dfrac{n}{13})&(13) \\ \\
    -26& \le & n &
    \end{array}\)\(\text{Interval notation: } [-26, \infty)\) Number line
  15. \(\begin{array}{rrrlr}
    \\ \\
    2 &+ & r&<&3 \\
    -2&&&& -2 \\
    \hline
    &&r&<&1
    \end{array}\)\(\text{Interval notation: } (-\infty, 1)\) Number line
  16. \(\begin{array}{rrrl}
    \\ \\
    (\dfrac{m}{5} &\le & -\dfrac{6}{5})&(5) \\ \\
    m& \le & -6 &
    \end{array}\)\(\text{Interval notation: } (-\infty, -6]\) Number line
  17. \(\begin{array}{rrrrrr}
    \\ \\ \\ \\ \\
    8&+&\dfrac{n}{3}&\ge & 6 & \\
    -8&&&&-8 & \\
    \hline
    &&(\dfrac{n}{3} &\ge & -2)& (3) \\ \\
    &&n & \ge & -6 &
    \end{array}\)\(\text{Interval notation: } [-6, \infty)\) Number line
  18. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\
    11&>&8&+ & \dfrac{x}{2} \\
    -8&&-8&& \\
    \hline
    (3 &> & \dfrac{x}{2})& (2)& \\ \\
    6 & > & x &&
    \end{array}\)\(\text{Interval notation: } (-\infty, 6)\) Number line
  19. \(\left(2>\dfrac{(a-2)}{5}\right)(5)\)\(\begin{array}{rrrrr}
    10&>&a&-&2 \\
    +2&&&+&2 \\
    \hline
    12&>&a&&
    \end{array}\)\(\text{Interval notation: } (-\infty, 12)\) Number line
  20. \(\left(\dfrac{(v-9)}{-4}\le 2 \right)(-4)\)\(\begin{array}{rrrrr}
    v&-&9&\ge &-8 \\
    &+&9&&+9 \\
    \hline
    &&v&\ge &1
    \end{array}\)\(\text{Interval notation: } [1, \infty)\)  Number line
  21. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\
    -47&\ge &8&-& 5x \\
    -8&&-8&& \\
    \hline
    \dfrac{-55}{-5}&\ge &\dfrac{-5x}{-5} && \\ \\
    11& \le & x &&
    \end{array}\)\(\text{Interval notation: } [11, \infty)\)  Number line
  22. \(\left(\dfrac{(6+x)}{12}\le -1 \right)(12)\)\(\begin{array}{rrrrr}
    6&+&x&\le &-12 \\
    -6&&&&-6 \\
    \hline
    &&x&\le &-18
    \end{array}\)\(\text{Interval notation: } (-\infty, -18]\) Number line
  23. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\
    \dfrac{-2}{-2}(3&+ &k)&<& \dfrac{-44}{-2} \\ \\
    3&+ &k &>&22 \\
    -3&&&&-3 \\
    \hline
    && k&>&19
    \end{array}\)\(\text{Interval notation: } (19, \infty)\) Number line
  24. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\
    -7n&- &10&\ge &60 \\
    &+&10&&+10 \\
    \hline
    &&\dfrac{-7n}{-7}&\ge & \dfrac{70}{-7} \\ \\
    &&n&\le &-10
    \end{array}\)\(\text{Interval notation: } (-\infty, -10]\) Number line
  25. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\
    \dfrac{18}{-2}&<&\dfrac{-2}{-2}(-8&+&p) \\ \\
    -9&>&-8&+&p \\
    +8&&+8&& \\
    \hline
    -1&>&p&&
    \end{array}\)\(\text{Interval notation: } (-\infty, -1)\)  Number line
  26. \(\left(5> \dfrac{x}{5}+1 \right)(5)\)\(\begin{array}{rrrrr}
    25&\ge &x&+ &5 \\
    -5&&&&-5 \\
    \hline
    20&\ge &x& &
    \end{array}\)\(\text{Interval notation: } (-\infty, 20]\)  Number line
  27. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\
    \dfrac{24}{-6}&\ge &\dfrac{-6}{-6}(m&-&6) \\ \\
    -4&\le &m&-&6 \\
    +6&&&+&6 \\
    \hline
    2&\le &m&&
    \end{array}\)\(\text{Interval notation: } [2, \infty)\) 
  28. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\
    \dfrac{-8}{-8}(n&-&5)&\ge &\dfrac{0}{-8} \\ \\
    n&-&5&\le &0 \\
    &+&5&&+5 \\
    \hline
    &&n&\le &5
    \end{array}\)\(\text{Interval notation: } (-\infty, 5]\) 
  29. \(\begin{array}{rrrrrrl}
    \\ \\ \\ \\ \\ \\
    -r&-&5(r&-&6)&<&-18 \\
    -r&-&5r&+&30&<&-18 \\
    &&&-&30&&-30 \\
    \hline
    &&&&\dfrac{-6r}{-6}&<&\dfrac{-48}{-6} \\ \\
    &&&&r&>&8 \\
    \end{array}\)\(\text{Interval notation: } (8, \infty)\) 
  30. \(\begin{array}{rrlrr}
    \\ \\ \\ \\ \\ \\
    \dfrac{-60}{-4}&\ge &\dfrac{-4}{-4}(-6x&-&3) \\ \\
    15&\le &-6x&-&3 \\
    +3&&&+&3 \\
    \hline
    \dfrac{18}{-6}&\le&\dfrac{-6x}{-6}&& \\ \\
    -3&\ge &x &&
    \end{array}\)\(\text{Interval notation: } (-\infty, -3]\) Number line
  31. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    &&\dfrac{24+4b}{4}&<&\dfrac{4}{4}(1&+&6b) \\ \\
    6&+&b&<&1&+&6b \\
    -1&-&b&&-1&-&b \\
    \hline
    &&\dfrac{5}{5}&<&\dfrac{5b}{5}&& \\ \\
    &&b&>&1&&
    \end{array}\)\(\text{Interval notation: } (1, \infty)\) Number line
  32. \(\begin{array}{rrrrrrr}
    \\ \\ \\
    -8(2&-&2n)&\ge &-16&+&n \\
    -16&+&16n& \ge & -16 & + & n\\
    +16&-&n&&+16 &-& n\\
    \hline
    &&15n& \ge &0 &&\\
    &&n& \ge &0 &&\\
    \end{array}\)\(\text{Interval notation: } [0, \infty)\) Number line
  33. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    &&\dfrac{-5v-5}{-5}&<&\dfrac{-5}{-5}(4v&+&1) \\ \\
    v&+&1&>&4v&+&1 \\
    -v&-&1&&-v&-&1 \\
    \hline
    &&\dfrac{0}{3}&>&\dfrac{3v}{3}&& \\ \\
    &&v&<&0&&
    \end{array}\)\(\text{Interval notation: } (-\infty, 0)\) Number line
  34. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\
    -36&+&6x&>&-8(x&+&2)&+&4x \\
    -36&+&6x&>&-8x&-&16&+&4x \\
    +16&-&6x&&-6x&+&16&& \\
    \hline
    &&\dfrac{-20}{-10}&>&\dfrac{-10x}{-10}&&&& \\ \\
    &&x&>&2&&&& \\
    \end{array}\)\(\text{Interval notation: } (2, \infty)\) Number line
  35. \(\begin{array}{rrrrrrrrl}
    \\ \\ \\ \\
    4&+&2(a&+&5)&<&-2(-a&-&4) \\
    4&+&2a&+&10&<&2a&+&8 \\
    -4&-&2a&-&10&&-2a&-&10-4 \\
    \hline
    &&0&<&-6&&&&
    \end{array}\)\(\text{False. No solution.}\) Number line
  36. \(\begin{array}{rrrrrrrrrrrrr}
    \\ \\ \\ \\ \\
    3(n&+&3)&+&7(8&-&8n)&<&5n&+&5&+&2 \\
    3n&+&9&+&56&-&56n&<&5n&+&7&& \\
    &&&&-53n&+&65&<&5n&+&7&& \\
    &&&&-5n&-&65&&-5n&-&65&& \\
    \hline
    &&&&&&-58n&<&-58&&&& \\
    &&&&&&n&>&1&&&& \\
    \end{array}\)\(\text{Interval notation: } (1, \infty)\)
  37. \(\begin{array}{rrrrrrr}
    \\ \\ \\
    -(k&-&2)&>&-k&-&20 \\
    -k&+&2&>&-k&-&20 \\
    +k&-&2&&+k&-&2 \\
    \hline
    &&0&>&-22&& \\
    \end{array}\)\(\text{Always true. Solution is all real numbers:} (-\infty, \infty)\) Number line
  38. \(\begin{array}{rrrrrrrrl}
    \\ \\ \\ \\
    -(4&-&5p)&+&3&\ge &-2(8&-&5p) \\
    -4&+&5p&+&3&\ge &-16&+&10p \\
    &&-1&+&5p&\ge &-16&+&10p \\
    &&+1&-&10p&&+1&-&10p \\
    \hline
    &&&&\dfrac{-5p}{-5}&\ge &\dfrac{-15}{-5}&& \\ \\
    &&&&p&\le &3&& \\
    \end{array}\)\(\text{Interval notation: } (-\infty, 3]\) Number line

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.