Answer Key 3.5
- \(\begin{array}{rrrrlrr}
\\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&3&=&\dfrac{2}{3}(x&-&2) \\ \\
y&-&3&=&\dfrac{2}{3}x&-&\dfrac{4}{3} \\ \\
&+&3&&&+&3 \\
\hline
&&y&=&\dfrac{2}{3}x&+&\dfrac{5}{3}
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&2&=&4(x&-&1) \\
y&-&2&=&4x&-&4 \\
&+&2&&&+&2 \\
\hline
&&y&=&4x&-&2
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&2&=&\dfrac{1}{2}(x&-&2) \\ \\
y&-&2&=&\dfrac{1}{2}x&-&1 \\
&+&2&&&+&2 \\
\hline
&&y&=&\dfrac{1}{2}x&+&1
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&1&=&-\dfrac{1}{2}(x&-&2) \\ \\
y&-&1&=&-\dfrac{1}{2}x&+&1 \\
&+&1&&&+&1 \\
\hline
&&y&=&-\dfrac{1}{2}x&+&2
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-5&=&9(x&-&-1) \\
y&+&5&=&9x&+&9 \\
&-&5&&&-&5 \\
\hline
&&y&=&9x&+&4
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-2&=&-2(x&-&2) \\
y&+&2&=&-2x&+&4 \\
&-&2&&&-&2 \\
\hline
&&y&=&-2x&+&2
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&1&=&\dfrac{3}{4}(x&-&-4) \\ \\
y&-&1&=&\dfrac{3}{4}x&+&3 \\
&+&1&&&+&1 \\
\hline
&&y&=&\dfrac{3}{4}x&+&4
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-3&=&-2(x&-&4) \\
y&+&3&=&-2x&+&8 \\
&-&3&&&-&3 \\
\hline
&&y&=&-2x&+&5
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-2&=&-3(x&-&0) \\
y&+&2&=&-3x&& \\
&-&2&&&-&2 \\
\hline
&&y&=&-3x&-&2 \\
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&1&=&4(x&-&-1) \\
y&-&1&=&4x&+&4 \\
&+&1&&&+&1 \\
\hline
&&y&=&4x&+&5
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-5&=&-\dfrac{1}{4}(x&-&0) \\ \\
y&+&5&=&-\dfrac{1}{4}x&& \\
&-&5&&&-&5 \\
\hline
&&y&=&-\dfrac{1}{4}x&-&5
\end{array}\) - \(\begin{array}{rrrrlrr}
\\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&2&=&-\dfrac{5}{4}(x&-&0) \\ \\
y&-&2&=&-\dfrac{5}{4}x&& \\
&+&2&&&+&2 \\
\hline
&&y&=&-\dfrac{5}{4}x&+&2
\end{array}\) - \(\begin{array}{rrrrlrrrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1)&& \\
y&-&-5&=&2(x&-&-1)&& \\
y&+&5&=&2x&+&2&& \\
-y&-&5&&-y&-&5&& \\
\hline
&&0&=&2x&-&y&-&3
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1)&&& \\
y&-&-2&=&-2(x&-&2)&&& \\
y&+&2&=&-2x&+&4&&& \\
-y&-&2&&-y&-&2&&& \\
\hline
&&(0&=&-2x&-&y&+&2)&(-1) \\
&&0&=&2x&+&y&-&2&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1)&&& \\
y&-&-1&=&-\dfrac{3}{5}(x&-&5)&&& \\ \\
y&+&1&=&-\dfrac{3}{5}x&+&3&&& \\ \\
-y&-&1&&-y&-&1&&& \\
\hline
&&(0&=&-\dfrac{3}{5}x&-&y&+&2)&(-5) \\ \\
&&0&=&3x&+&5y&-&10&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-2&=&-\dfrac{2}{3}(x&-&-2) \\ \\
y&+&2&=&-\dfrac{2}{3}x&-&\dfrac{4}{3} \\ \\
-y&-&2&&-y&-&2 \\
\hline
&&(0&=&-\dfrac{2}{3}x&-&y&-&\dfrac{10}{3})&(-3) \\ \\
&&0&=&2x&+&3y&+&10&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&1&=&\dfrac{1}{2}(x&-&-4) \\ \\
y&-&1&=&\dfrac{1}{2}x&+&2 \\ \\
-y&+&1&&-y&+&1 \\
\hline
&&(0&=&\dfrac{1}{2}x&-&y&+&3)&(2) \\ \\
&&0&=&x&-&2y&+&6&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-3&=&-\dfrac{7}{4}(x&-&4) \\ \\
y&+&3&=&-\dfrac{7}{4}x&+&7 \\ \\
-y&-&3&&-y&-&3 \\
\hline
&&(0&=&-\dfrac{7}{4}x&-&y&+&4)&(-4) \\ \\
&&0&=&7x&+&4y&-&16&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-2&=&-\dfrac{3}{2}(x&-&4) \\ \\
y&+&2&=&-\dfrac{3}{2}x&+&6 \\ \\
-y&-&2&&-y&-&2 \\
\hline
&&(0&=&-\dfrac{3}{2}x&-&y&+&4)&(-2) \\ \\
&&0&=&3x&+&2y&-&8&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&0&=&-\dfrac{5}{2}(x&-&-2) \\ \\
&&y&=&-\dfrac{5}{2}x&-&5 \\ \\
&&-y&&-y&& \\
\hline
&&(0&=&-\dfrac{5}{2}x&-&y&+&5)&(-2) \\ \\
&&0&=&5x&+&2y&+&10&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&-3&=&-\dfrac{2}{5}(x&-&-5) \\ \\
y&+&3&=&-\dfrac{2}{5}x&-&2 \\ \\
-y&-&3&&-y&-&3 \\
\hline
&&(0&=&-\dfrac{2}{5}x&-&y&-&5)&(-5) \\ \\
&&0&=&2x&+&5y&+&25&
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&3&=&\dfrac{7}{3}(x&-&3) \\ \\
y&-&3&=&\dfrac{7}{3}x&-&7 \\ \\
-y&+&3&&-y&+&3 \\
\hline
&&(0&=&\dfrac{7}{3}x&-&y&-&4)&(3) \\ \\
&&0&=&7x&-&3y&-&12&
\end{array}\) - \(\begin{array}{rrrrlrrrr}
\\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1)&& \\
y&-&-2&=&1(x&-&2)&& \\
y&+&2&=&x&-&2&& \\
-y&-&2&&-y&-&2&& \\
\hline
&&0&=&x&-&y&-&4
\end{array}\) - \(\begin{array}{rrrrlrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
y&-&y_1&=&m(x&-&x_1) \\
y&-&4&=&-\dfrac{1}{3}(x&-&-3) \\ \\
y&-&4&=&-\dfrac{1}{3}x&-&1 \\ \\
-y&+&4&&-y&+&4 \\
\hline
&&(0&=&-\dfrac{1}{3}x&-&y&+&3)&(-3) \\ \\
&&0&=&x&+&3y&-&9&
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{1-3}{-3--4}\Rightarrow \dfrac{-2}{1}\Rightarrow -2 \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&1&=&-2(x&-&-3) \\
y&-&1&=&-2x&-&6 \\
&+&1&&&+&1 \\
\hline
&&y&=&-2x&-&5
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{-3-3}{-3-1}\Rightarrow \dfrac{-6}{-4}\Rightarrow \dfrac{3}{2} \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&3&=&\dfrac{3}{2}(x&-&1) \\ \\
y&-&3&=&\dfrac{3}{2}x&-&\dfrac{3}{2} \\ \\
&+&3&&&+&3 \\
\hline
&&y&=&\dfrac{3}{2}x&+&\dfrac{3}{2}
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{0-1}{-3-5}\Rightarrow \dfrac{-1}{-8}\Rightarrow \dfrac{1}{8} \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&0&=&\dfrac{1}{8}(x&-&-3) \\ \\
&&y&=&\dfrac{1}{8}x&+&\dfrac{3}{8}
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{4-5}{4--4}\Rightarrow \dfrac{-1}{8} \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&4&=&-\dfrac{1}{8}(x&-&4) \\ \\
y&-&4&=&-\dfrac{1}{8}x&+&\dfrac{1}{2} \\ \\
&+&4&&&+&4 \\
\hline
&&y&=&-\dfrac{1}{8}x&+&\dfrac{9}{2}
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{4--2}{0--4}\Rightarrow \dfrac{6}{4}\Rightarrow \dfrac{3}{2} \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&4&=&\dfrac{3}{2}(x&-&0) \\ \\
y&-&4&=&\dfrac{3}{2}x&& \\
&+&4&&&+&4 \\
\hline
&&y&=&\dfrac{3}{2}x&+&4
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{4-1}{4--4}\Rightarrow \dfrac{3}{8} \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&4&=&\dfrac{3}{8}(x&-&4) \\ \\
y&-&4&=&\dfrac{3}{8}x&-&\dfrac{3}{2} \\ \\
&+&4&&&+&4 \\
\hline
&&y&=&\dfrac{3}{8}x&+&\dfrac{5}{2}
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{3-5}{-5-3}\Rightarrow \dfrac{-2}{-8}\Rightarrow \dfrac{1}{4} \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&3&=&\dfrac{1}{4}(x&-&-5) \\ \\
y&-&3&=&\dfrac{1}{4}x&-&\dfrac{5}{4} \\ \\
&+&3&&&+&3 \\
\hline
&&y&=&\dfrac{1}{4}x&+&\dfrac{17}{4}
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{0--4}{-5--1}\Rightarrow \dfrac{4}{-4}\Rightarrow -1 \\ \\ \)
\(\begin{array}{rrrrlrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&0&=&-1(x&-&-5) \\
&&y&=&-x&-&5
\end{array}\) - \[
m=\frac{\Delta y}{\Delta x}
=\frac{5-(-3)}{-4-3}
=\frac{8}{-7}
=-\frac{8}{7}
\]\[
\begin{array}{rrrrlrrrrr}
y &- & y_1 &=& m(x &- & x_1) \\[6pt]
y &- & 5 &=& -\frac{8}{7}(x &- & -4) \\[6pt]
y &- & 5 &=& -\frac{8}{7}x &- & \frac{32}{7} \\[6pt]
-y &+& 5 && -y &+& 5 \\ \hline
&& 0 &=& \frac{8}{7}x + y - \frac{3}{7} \\[6pt]
&& 0 &=& 8x + 7y - 3
\end{array}
\] - \[
m=\frac{\Delta y}{\Delta x}
=\frac{-4-(-5)}{-5-(-1)}
=\frac{1}{-4}
=-\frac{1}{4}
\]\[
\begin{array}{rrrrlrrrrr}
y &- & y_1 &=& m(x &- & x_1) \\[6pt]
y &- & (-5) &=& -\frac14(x - (-1)) \\[6pt]
y &+ & 5 &=& -\frac14(x + 1) \\[6pt]
y &+ & 5 &=& -\frac14 x &- & \frac14 \\[6pt]
-y &- & 5 && -y &- & 5 \\ \hline
&& 0 &=& -\frac14 x - y - \frac{21}{4} \\[6pt]
&& 0 &=& x + 4y + 21
\end{array}
\] - \[
m=\frac{\Delta y}{\Delta x}
=\frac{4-(-3)}{-2-3}
=\frac{7}{-5}
=-\frac75
\]\[
\begin{array}{rrrrlrrrrr}
y &- & y_1 &=& m(x &- & x_1) \\[6pt]
y &- & 4 &=& -\frac75(x - (-2)) \\[6pt]
y &- & 4 &=& -\frac75 x &- & \frac{14}{5} \\[6pt]
-y &+ & 4 && -y &+ & 4 \\ \hline
&& 0 &=& -\frac75 x - y + \frac65 \\[6pt]
&& 0 &=& 7x + 5y - 6
\end{array}
\] - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{-4--7}{-3--6}\Rightarrow \dfrac{3}{3}\Rightarrow 1 \\ \\ \)
\(\begin{array}{rrrrlrrrr}
y&-&y_1&=&m(x&-&x_1)&& \\
y&-&-4&=&1(x&-&-3)&& \\
y&+&4&=&x&+&3&& \\
-y&-&4&&-y&-&4&& \\
\hline
&&0&=&x&-&y&-&1
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{-2-1}{-1--5}\Rightarrow \dfrac{-3}{4} \\ \\ \)
\(\begin{array}{rrrrlrrrrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&-2&=&-\dfrac{3}{4}(x&-&-1) \\ \\
y&+&2&=&-\dfrac{3}{4}x&-&\dfrac{3}{4} \\ \\
-y&-&2&&-y&-&2 \\
\hline
&&(0&=&-\dfrac{3}{4}x&-&y&-&\dfrac{11}{4}) &(-4) \\ \\
&&0&=&3x&+&4y&+&11&
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{-2--1}{5--5}\Rightarrow \dfrac{-1}{10} \\ \\ \)
\(\begin{array}{rrrrlrrrrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&-1&=&-\dfrac{1}{10}(x&-&-5) \\ \\
y&+&1&=&-\dfrac{1}{10}x&-&\dfrac{1}{2} \\ \\
-y&-&1&&-y&-&1 \\
\hline
&&(0&=&-\dfrac{1}{10}x&-&y&-&\dfrac{3}{2}) &(-10) \\ \\
&&0&=&x&+&10y&+&15&
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{-3-5}{2--5}\Rightarrow \dfrac{-8}{7} \\ \\ \)
\(\begin{array}{rrrrlrrrrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&-3&=&-\dfrac{8}{7}(x&-&2) \\ \\
y&+&3&=&-\dfrac{8}{7}x&+&\dfrac{16}{7} \\ \\
-y&-&3&&-y&-&3 \\
\hline
&&(0&=&-\dfrac{8}{7}x&-&y&-&\dfrac{5}{7}) &(-7) \\ \\
&&0&=&8x&+&7y&+&5&
\end{array}\) - \(\phantom{1}\)
\(m=\dfrac{\Delta y}{\Delta x}\Rightarrow \dfrac{-4--1}{-5-1}\Rightarrow \dfrac{-3}{-6}\Rightarrow \dfrac{1}{2} \\ \\ \)
\(\begin{array}{rrrrlrrrrr}
y&-&y_1&=&m(x&-&x_1) \\
y&-&-1&=&\dfrac{1}{2}(x&-&1) \\ \\
y&+&1&=&\dfrac{1}{2}x&-&\dfrac{1}{2} \\ \\
-y&-&1&&-y&-&1 \\
\hline
&&(0&=&\dfrac{1}{2}x&-&y&-&\dfrac{3}{2}) &(2) \\ \\
&&0&=&x&-&2y&-&3&
\end{array}\)