Answer Key 3.2
- \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(6--6)^2&+&(4--1)^2 \\
d^2&=&12^2&+&5^2 \\
d^2&=&144&+&25 \\
d^2&=&169&& \\
d^2&=&\sqrt{169}&& \\
d&=&13&&
\end{array}\) - \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(5-1)^2&+&(-1--4)^2 \\
d^2&=&4^2&+&3^2 \\
d^2&=&16&+&9 \\
d^2&=&25&& \\
d^2&=&\sqrt{25}&& \\
d&=&5&&
\end{array}\) - \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(3--5)^2&+&(5--1)^2 \\
d^2&=&8^2&+&6^2 \\
d^2&=&64&+&36 \\
d^2&=&100&& \\
d^2&=&\sqrt{100}&& \\
d&=&10&&
\end{array}\) - \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(12-6)^2&+&(4--4)^2 \\
d^2&=&6^2&+&8^2 \\
d^2&=&36&+&64 \\
d^2&=&100&& \\
d^2&=&\sqrt{100}&& \\
d&=&10&&
\end{array}\) - \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(4--8)^2&+&(3--2)^2 \\
d^2&=&12^2&+&5^2 \\
d^2&=&144&+&25 \\
d^2&=&169&& \\
d^2&=&\sqrt{169}&& \\
d&=&13&&
\end{array}\) - \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(7-3)^2&+&(1--2)^2 \\
d^2&=&4^2&+&3^2 \\
d^2&=&16&+&9 \\
d^2&=&25&& \\
d^2&=&\sqrt{25}&& \\
d&=&5&&
\end{array}\) - \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(-2--10)^2&+&(0--6)^2 \\
d^2&=&8^2&+&6^2 \\
d^2&=&64&+&36 \\
d^2&=&100&& \\
d^2&=&\sqrt{100}&& \\
d&=&10&&
\end{array}\) - \(\begin{array}{lllll}
\\ \\ \\ \\ \\ \\
d^2&=&\Delta x^2&+&\Delta y^2 \\
d^2&=&(14-8)^2&+&(6--2)^2 \\
d^2&=&6^2&+&8^2 \\
d^2&=&36&+&64 \\
d^2&=&100&& \\
d^2&=&\sqrt{100}&& \\
d&=&10&&
\end{array}\) - \(\left(\dfrac{6+-6}{2}, \dfrac{5+-1}{2}\right)\Rightarrow \left(\dfrac{0}{2}, \dfrac{4}{2}\right) \Rightarrow (0,2)\)
- \(\left(\dfrac{5+1}{2}, \dfrac{-2+-4}{2}\right)\Rightarrow \left(\dfrac{6}{2}, \dfrac{-6}{2}\right)\Rightarrow (3,-3)\)
- \(\left(\dfrac{3+-5}{2}, \dfrac{5+-1}{2}\right)\Rightarrow \left(\dfrac{-2}{2}, \dfrac{4}{2}\right)\Rightarrow (-1,2)\)
- \(\left(\dfrac{12+6}{2}, \dfrac{4+-4}{2}\right)\Rightarrow \left(\dfrac{18}{2}, \dfrac{0}{2}\right) \Rightarrow (9,0)\)
- \(\left(\dfrac{-8+6}{2}, \dfrac{-1+7}{2}\right)\Rightarrow \left(\dfrac{-2}{2}, \dfrac{6}{2}\right) \Rightarrow (-1,3)\)
- \(\left(\dfrac{1+3}{2}, \dfrac{-6+-2}{2}\right)\Rightarrow \left(\dfrac{4}{2}, \dfrac{-8}{2}\right) \Rightarrow (2,-4)\)
- \(\left(\dfrac{-7+3}{2}, \dfrac{-1+9}{2}\right)\Rightarrow \left(\dfrac{-4}{2}, \dfrac{8}{2}\right) \Rightarrow (-2,4)\)
- \(\left(\dfrac{2+12}{2}, \dfrac{-2+4}{2}\right)\Rightarrow \left(\dfrac{14}{2}, \dfrac{2}{2}\right) \Rightarrow (7,1)\)