"

Answer Key 3.2

  1. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(6--6)^2&+&(4--1)^2 \\
    d^2&=&12^2&+&5^2 \\
    d^2&=&144&+&25 \\
    d^2&=&169&& \\
    d^2&=&\sqrt{169}&& \\
    d&=&13&&
    \end{array}\)
  2. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(5-1)^2&+&(-1--4)^2 \\
    d^2&=&4^2&+&3^2 \\
    d^2&=&16&+&9 \\
    d^2&=&25&& \\
    d^2&=&\sqrt{25}&& \\
    d&=&5&&
    \end{array}\)
  3. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(3--5)^2&+&(5--1)^2 \\
    d^2&=&8^2&+&6^2 \\
    d^2&=&64&+&36 \\
    d^2&=&100&& \\
    d^2&=&\sqrt{100}&& \\
    d&=&10&&
    \end{array}\)
  4. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(12-6)^2&+&(4--4)^2 \\
    d^2&=&6^2&+&8^2 \\
    d^2&=&36&+&64 \\
    d^2&=&100&& \\
    d^2&=&\sqrt{100}&& \\
    d&=&10&&
    \end{array}\)
  5. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(4--8)^2&+&(3--2)^2 \\
    d^2&=&12^2&+&5^2 \\
    d^2&=&144&+&25 \\
    d^2&=&169&& \\
    d^2&=&\sqrt{169}&& \\
    d&=&13&&
    \end{array}\)
  6. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(7-3)^2&+&(1--2)^2 \\
    d^2&=&4^2&+&3^2 \\
    d^2&=&16&+&9 \\
    d^2&=&25&& \\
    d^2&=&\sqrt{25}&& \\
    d&=&5&&
    \end{array}\)
  7. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(-2--10)^2&+&(0--6)^2 \\
    d^2&=&8^2&+&6^2 \\
    d^2&=&64&+&36 \\
    d^2&=&100&& \\
    d^2&=&\sqrt{100}&& \\
    d&=&10&&
    \end{array}\)
  8. \(\begin{array}{lllll}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2&+&\Delta y^2 \\
    d^2&=&(14-8)^2&+&(6--2)^2 \\
    d^2&=&6^2&+&8^2 \\
    d^2&=&36&+&64 \\
    d^2&=&100&& \\
    d^2&=&\sqrt{100}&& \\
    d&=&10&&
    \end{array}\)
  9. \(\left(\dfrac{6+-6}{2}, \dfrac{5+-1}{2}\right)\Rightarrow \left(\dfrac{0}{2}, \dfrac{4}{2}\right) \Rightarrow (0,2)\)
  10. \(\left(\dfrac{5+1}{2}, \dfrac{-2+-4}{2}\right)\Rightarrow \left(\dfrac{6}{2}, \dfrac{-6}{2}\right)\Rightarrow (3,-3)\)
  11. \(\left(\dfrac{3+-5}{2}, \dfrac{5+-1}{2}\right)\Rightarrow \left(\dfrac{-2}{2}, \dfrac{4}{2}\right)\Rightarrow (-1,2)\)
  12. \(\left(\dfrac{12+6}{2}, \dfrac{4+-4}{2}\right)\Rightarrow \left(\dfrac{18}{2}, \dfrac{0}{2}\right) \Rightarrow (9,0)\)
  13. \(\left(\dfrac{-8+6}{2}, \dfrac{-1+7}{2}\right)\Rightarrow \left(\dfrac{-2}{2}, \dfrac{6}{2}\right) \Rightarrow (-1,3)\)
  14. \(\left(\dfrac{1+3}{2}, \dfrac{-6+-2}{2}\right)\Rightarrow \left(\dfrac{4}{2}, \dfrac{-8}{2}\right) \Rightarrow (2,-4)\)
  15. \(\left(\dfrac{-7+3}{2}, \dfrac{-1+9}{2}\right)\Rightarrow \left(\dfrac{-4}{2}, \dfrac{8}{2}\right) \Rightarrow (-2,4)\)
  16. \(\left(\dfrac{2+12}{2}, \dfrac{-2+4}{2}\right)\Rightarrow \left(\dfrac{14}{2}, \dfrac{2}{2}\right) \Rightarrow (7,1)\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.