"

Answer Key 2.7

  1. \(x=ky\)
  2. \(x=kyz\)
  3. \(x=\dfrac{k}{y}\)
  4. \(x=ky^2\)
  5. \(x=kzy\)
  6. \(x=\dfrac{k}{y^3}\)
  7. \(x=ky^2\sqrt{z}\)
  8. \(x=\dfrac{k}{y^6}\)
  9. \(x=\dfrac{ky^3}{\sqrt{z}}\)
  10. \(x=\dfrac{k}{y^2\sqrt{z}}\)
  11. \(x=\dfrac{kzy}{p^3}\)
  12. \(x=\dfrac{k}{y^3z^2}\)
  13. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    A&=&kB \\
    (15)&=&k(5) \\ \\
    \dfrac{15}{5}&=&\dfrac{k(5)}{5} \\ \\
    k&=&3
    \end{array}\)
  14. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    P&=&kQR \\
    (12)&=&k(8)(3) \\ \\
    \dfrac{12}{24}&=&\dfrac{k(8)(3)}{24} \\ \\
    k&=&\dfrac{1}{2}
    \end{array}\)
  15. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    A&=&\dfrac{k}{B} \\ \\
    (7)&=&\dfrac{k}{(4)} \\ \\
    (4)7&=&\dfrac{k}{\cancel{4}}\cancel{(4)} \\ \\
    k&=&28
    \end{array}\)
  16. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    A&=&kB^2 \\
    (6)&=&k(3)^2 \\ \\
    \dfrac{6}{9}&=&\dfrac{k(3)^2}{9} \\ \\
    k&=&\dfrac{6}{9}\text{ or }\dfrac{2}{3}
    \end{array}\)
  17. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    C&=&kAB \\
    (24)&=&k(3)(2) \\ \\
    \dfrac{24}{6}&=&\dfrac{k(3)(2)}{6} \\ \\
    k&=&4
    \end{array}\)
  18. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{k}{x^3} \\ \\
    (54)&=&\dfrac{k}{(3)^3} \\ \\
    54&=&\dfrac{k}{27} \\ \\
    27\cdot 54&=&\dfrac{k}{\cancel{27}}\cdot \cancel{27} \\ \\
    k&=&1458
    \end{array}\)
  19. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    x&=&kY \\
    (12)&=&k(8) \\ \\
    \dfrac{12}{8}&=&\dfrac{k(8)}{8} \\ \\
    k&=&\dfrac{12}{8}\text{ or }\dfrac{3}{2}
    \end{array}\)
  20. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\
    A&=&kB^2\sqrt{C} \\
    (25)&=&k(5)^2\sqrt{(9)} \\
    25&=&k(75) \\ \\
    k&=&\dfrac{25}{75} \\ \\
    k&=&\dfrac{1}{3}
    \end{array}\)
  21. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{kmn^2}{d} \\ \\
    (10)&=&\dfrac{k(4)(5)^2}{(6)} \\ \\
    k&=&\dfrac{\cancel{10}\cancel{5}\cdot \cancel{6}3}{\cancel{(4)}(5)^{\cancel{2}}} \\ \\
    k&=&\dfrac{3}{5}
    \end{array}\)
  22. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    P&=&\dfrac{kT}{V} \\ \\
    (10)&=&\dfrac{k(250)}{(400)} \\ \\
    k&=&\dfrac{10(400)}{250} \\ \\
    k&=&16
    \end{array}\)
  23. \(\phantom{1}\)
    \(I=kV \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    &&\textbf{1st Data} \\
    I&=&5 \text{ A} \\
    V&=&15\text{ V} \\
    k&=&\text{find} \\ \\
    I&=&kV \\
    5\text{ A}&=&k(\text{15 V}) \\ \\
    k&=&\dfrac{\text{5 A}}{\text{15 V}} \\ \\
    k&=&\dfrac{1}{3}\text{ A/V}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    I&=&\text{find} \\
    k&=&\dfrac{1}{3} \\ \\
    V&=&\text{25 V} \\ \\
    I&=&kV \\
    I&=&\left(\dfrac{1}{3}\right)(25) \\ \\
    I&=&8\dfrac{1}{3}\text{ A}
    \end{array}
    \end{array}\)
  24. \(\phantom{1}\)
    \(I=\dfrac{k}{R} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    &&\textbf{1st Data} \\
    I&=&\text{12 A} \\
    k&=&\text{find} \\
    R&=&240\Omega \\ \\
    I&=&\dfrac{k}{R} \\ \\
    \text{12 A}&=&\dfrac{k}{240\Omega} \\ \\
    k&=&(\text{12 A})(240\Omega) \\
    k&=&2880\text{ A}\Omega
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    I&=&\text{find} \\
    k&=&2880 \\
    R&=&540\Omega \\ \\
    I&=&\dfrac{k}{R} \\ \\
    I&=&\dfrac{2880\text{ A}\Omega}{540\Omega} \\ \\
    I&=&5.\bar{3}\text{ A or }5\dfrac{1}{3}
    \end{array}
    \end{array}\)
  25. \(\phantom{1}\)
    \(d_{\text{s}}=km \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\ \\
    &&\textbf{1st Data} \\
    d_{\text{s}}&=&18\text{ cm} \\
    k&=&\text{find} \\
    m&=&3\text{ kg} \\ \\
    18\text{ cm}&=&k(3\text{ kg}) \\  \\
    k&=&\dfrac{\text{18 cm}}{\text{3 kg}} \\ \\
    k&=&\text{6 cm/kg}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    d_{\text{s}}&=&\text{find} \\
    k&=&\text{6 cm/kg} \\
    m&=&\text{5 kg} \\ \\
    d_{\text{s}}&=&(\text{6 cm/kg})(\text{5 kg}) \\
    d_{\text{s}}&=&\text{30 cm}
    \end{array}
    \end{array}\)
  26. \(\phantom{1}\)
    \(V=\dfrac{k}{P} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\
    &&\textbf{1st Data} \\
    P&=&32\text{ kg/cm}^2 \\
    V&=&200\text{ cm}^3 \\
    k&=&\text{find} \\ \\
    200\text{ cm}^3&=&\dfrac{k}{32\text{ kg/cm}^2} \\ \\
    k&=&(200\text{ cm}^3)(32\text{ kg/cm}^2) \\
    k&=&6400\text{ kg cm}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    P&=&40 \\
    V&=&\text{find} \\
    k&=&6400 \\ \\
    V&=&\dfrac{6400}{40} \\ \\
    V&=&160\text{ cm}^3
    \end{array}
    \end{array}\)
  27. \(\phantom{1}\)
    \(c=kP \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\
    &&\textbf{1st Data} \\
    c&=&60,000 \\
    k&=&\text{find} \\
    P&=&250 \\ \\
    60,000&=&k(250) \\ \\
    k&=&\dfrac{60,000}{250} \\ \\
    k&=&240
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    && \textbf{2nd Data} \\
    c&=&\text{find} \\
    k&=&240 \\
    P&=&1,000,000 \\ \\
    c&=&(240)(1,000,000) \\
    c&=&240,000,000\text{ or 240 million}
    \end{array}
    \end{array}\)
  28. \(\phantom{1}\)
    \(t=\dfrac{k}{b} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\
    &&\textbf{1st Data} \\
    t&=&5\text{ h} \\
    k&=&\text{find} \\
    b&=&7 \\ \\
    5\text{ h}&=&\dfrac{k}{7} \\ \\
    k&=&\text{(5 h)}(7) \\
    k&=&35
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    t&=&\text{find} \\
    k&=&35 \\
    b&=&10 \\ \\
    t&=&\dfrac{35}{10} \\ \\
    t&=&3.5\text{ h}
    \end{array}
    \end{array}\)
  29. \(\phantom{1}\)
    \(\lambda=\dfrac{k}{f} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\
    &&\textbf{1st Data} \\
    \lambda&=&250\text{ m} \\
    k&=&\text{find} \\
    f&=&1200\text{ kHz} \\ \\
    250&=&\dfrac{k}{1200} \\ \\
    k&=&(250)(1200) \\
    k&=&300,000
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    \lambda&=&\text{find} \\
    k&=&300,000 \\
    f&=&60\text{ kHz} \\ \\
    \lambda&=&\dfrac{300,000}{60} \\ \\
    \lambda&=&5000\text{ m}
    \end{array}
    \end{array}\)
  30. \(\phantom{1}\)
    \(w=km \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\
    && \textbf{1st Data} \\
    w&=&64\text{ kg} \\
    k&=&\text{find} \\
    m&=&96\text{ kg} \\ \\
    64&=&k(96) \\ \\
    k&=&\dfrac{64}{96} \\ \\
    k&=&\dfrac{2}{3}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    w&=&\text{find} \\
    k&=&\dfrac{2}{3} \\
    m&=&60\text{ kg} \\ \\
    w&=&\left(\dfrac{2}{3}\right)(60\text{ kg}) \\ \\
    w&=&40\text{ kg}
    \end{array}
    \end{array}\)
  31. \(\phantom{1}\)
    \(t=\dfrac{d}{v} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    &&\textbf{1st Data} \\
    t&=&\text{5 h} \\
    d&=&\text{find} \\
    v&=&\text{80 km/h} \\ \\
    \text{5 h}&=&\dfrac{d}{\text{80 km/h}} \\ \\
    d&=&5(80) \\
    d&=&\text{400 km}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    \\ \\
    &&\textbf{2nd Data} \\
    t&=&\text{4.2 h} \\
    d&=&\text{400 km} \\
    v&=&\text{find} \\ \\
    4.2&=&\dfrac{400}{v} \\ \\
    v&=&\dfrac{400}{4.2} \\ \\
    v&=&95.24\text{ km/h}
    \end{array}
    \end{array}\)
  32. \(\phantom{1}\)
    \(V=khr^2 \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\
    &&\textbf{1st Data} \\
    V&=&33.5\text{ cm}^3 \\
    k&=&\text{find} \\
    h&=&\text{8 cm} \\
    r&=&\text{2 cm} \\ \\
    33.5&=&k(8)(2)^2 \\ \\
    k&=&\dfrac{33.5}{(8)(2)^2} \\ \\
    k&=&1.046875
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    V&=&\text{find} \\
    k&=&1.046875 \\
    h&=&\text{6 cm} \\
    r&=&\text{4 cm} \\ \\
    V&=&khr^2 \\
    V&=&(1.046875)(6)(4)^2 \\
    V&=&100.5\text{ cm}^3
    \end{array}
    \end{array}\)
  33. \(\phantom{1}\)
    \(F_{\text{e}}=\dfrac{kv^2}{r} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\ \\
    &&\textbf{1st Data} \\
    F_{\text{e}}&=&100\text{ N} \\
    k&=&\text{find} \\
    v&=&10\text{ m/s} \\
    r&=&\text{0.5 m} \\ \\
    100\text{ N}&=&\dfrac{k(10 \text{ m/s})^2}{\text{0.5 m}} \\ \\
    k&=&\dfrac{(0.5)(100)}{(10)^2} \\ \\
    k&=&0.5
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    F_{\text{e}}&=&\text{find} \\
    k&=&0.5 \\
    v&=&25\text{ m/s} \\
    r&=&1.0\text{ m} \\ \\
    F_{\text{e}}&=&\dfrac{0.5(25)^2}{1.0} \\ \\
    F_{\text{e}}&=&312.5\text{ N}
    \end{array}
    \end{array}\)
  34. \(\phantom{1}\)
    \(L_{\text{max}}=\dfrac{kd^4}{h^2} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\
    &&\textbf{1st Data} \\
    L_{\text{max}}&=&64\text{ tonnes} \\
    k&=&\text{find} \\
    d&=&2.0\text{ m} \\
    h&=&8.0\text{ m} \\ \\
    64&=&\dfrac{k(2)^4}{(8)^2} \\ \\
    k&=&\dfrac{64(8)^2}{(2)^4} \\ \\
    k&=&256
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    L_{\text{max}}&=&\text{find} \\
    k&=&256 \\
    d&=&3.0\text{ m} \\
    h&=&12.0\text{ m} \\ \\
    L_{\text{max}}&=&\dfrac{(256)(3.0)^4}{(12.0)^2} \\ \\
    L_{\text{max}}&=&144\text{ tonnes}
    \end{array}
    \end{array}\)
  35. \(\phantom{1}\)
    \(V=\dfrac{kT}{P} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\
    &&\textbf{1st Data} \\
    V&=&225\text{ cc} \\
    k&=&\text{find} \\
    T&=&300\text{ K} \\
    P&=&100\text{ N/cm}^2 \\ \\
    V&=&\dfrac{kT}{P} \\ \\
    225&=&\dfrac{k(300)}{100} \\ \\
    k&=&\dfrac{225(100)}{300} \\ \\
    k&=&75
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    V&=&\text{find} \\
    k&=&75 \\
    T&=&270 \\
    P&=&150 \\ \\
    V&=&\dfrac{75(270)}{150} \\ \\
    V&=&135\text{ cc}
    \end{array}
    \end{array}\)
  36. \(\phantom{1}\)
    \(R=\dfrac{kl}{d^2} \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\
    &&\textbf{1st Data} \\
    R&=&20\Omega \\
    k&=&\text{find} \\
    l&=&5.0\text{ m} \\
    d&=&0.25\text{ cm} \\ \\
    R&=&\dfrac{kl}{d^2} \\ \\
    20\Omega&=&\dfrac{k(5.0\text{ m})}{\text{(0.25 cm)}^2} \\ \\
    k&=&\dfrac{(20 \Omega)\text{(0.25 cm)}^2}{\text{5.0 m}} \\ \\
    k&=&0.25
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    R&=&\text{find} \\
    k&=&0.25 \\
    l&=&10.0\text{ m} \\
    d&=&0.50\text{ cm} \\ \\
    R&=&\dfrac{(0.25)\text{(10.0 m)}}{\text{(0.50 cm)}^2} \\ \\
    R&=&10\Omega
    \end{array}
    \end{array}\)
  37. \(\phantom{1}\)
    \(V=khd^2 \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrl}
    &&\textbf{1st Data} \\
    V&=&377\text{ m}^3 \\
    k&=&\text{find} \\
    h&=&30\text{ m} \\
    d&=&2.0\text{ m} \\ \\
    377\text{ m}^3&=&k(30)(2.0)^2 \\ \\
    k&=&\dfrac{377}{(30)(2.0)^2} \\ \\
    k&=&3.1416
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    &&\textbf{2nd Data} \\
    V&=&225\text{ m}^3 \\
    k&=&3.1416 \\
    h&=&\text{find} \\
    d&=&1.75\text{ m} \\ \\
    225&=&\pi h(1.75)^2 \\ \\
    h&=&\dfrac{225}{\pi (1.75)^2} \\ \\
    h&=&23.4\text{ m}
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.