"

Answer Key 2.6

  1. (3) + 1 + (4) − (1)
    3 + 1 + 4 − 1
    7
  2. (5)2 + (5) − (1)
    25 + 5 − 1
    29
  3. (6) − [(6)(5) ÷ 6]
    6 − [30 ÷ 6]
    6 − 5
    1
  4. [6 + (4) − (1)] ÷ 3
    [6 + 4 − 1] ÷ 3
    9 ÷ 3
    3
  5. (5)2 − ((3) − 1)
    25 − (3 − 1)
    25 − 2
    23
  6. (6) + 6(4) − 4(4)
    6 + 24 − 16
    14
  7. 5(4) + (2)(5) ÷ 2
    20 + 10 ÷ 2
    20 + 5
    25
  8. 5((6) + (2)) + 1 + (5)
    5(6 + 2) + 1 + 5
    5(8) + 6
    40 + 6
    46
  9. [4 − ((6) − (4))] ÷ 2 + (6)
    [4 − (6 − 4)] ÷ 2 + 6
    [4 − 2] ÷ 2 + 6
    2 ÷ 2 + 6
    1 + 6
    7
  10. (4) + (5) − 1
    4 + 5 − 1
    8
  11. \(\begin{array}{rrl}
    \\ \\ \\
    \dfrac{ab}{a}&=&\dfrac{c}{a} \\ \\
    b&=&\dfrac{c}{a}
    \end{array}\)
  12. \(\begin{array}{l}
    \\ \\ \\
    \left(g=\dfrac{h}{i}\right)(i) \\ \\
    h=gi
    \end{array}\)
  13. \(\begin{array}{l}
    \\ \\ \\ \\
    \left(\left(\dfrac{f}{g}\right)x=b\right)\dfrac{g}{f} \\ \\
    x=\dfrac{bg}{f}
    \end{array}\)
  14. \(\begin{array}{l}
    \\ \\ \\
    \left(p=\dfrac{3y}{q}\right)\left(\dfrac{q}{3}\right) \\ \\
    y=\dfrac{pq}{3}
    \end{array}\)
  15. \(\begin{array}{l}
    \\ \\ \\
    \left(3x=\dfrac{a}{b}\right)\left(\dfrac{1}{3}\right) \\ \\
    x=\dfrac{a}{3b}
    \end{array}\)
  16. \(\begin{array}{l}
    \\ \\ \\
    \left(\dfrac{ym}{b}=\dfrac{c}{d}\right)\left(\dfrac{b}{m}\right) \\ \\
    y=\dfrac{bc}{dm}
    \end{array}\)
  17. \(\begin{array}{l}
    \\ \\ \\
    \left(V=\dfrac{4}{3}\pi r^3\right)\left(\dfrac{3}{4r^3}\right) \\ \\
    \pi=\dfrac{3V}{4r^3}
    \end{array}\)
  18. \(\begin{array}{l}
    \\ \\
    \left(E=mv^2\right)\left(\dfrac{1}{v^2}\right) \\ \\
    m=\dfrac{E}{v^2}
    \end{array}\)
  19. \(\begin{array}{l}
    \\ \\ \\
    \left(c=\dfrac{4y}{m+n}\right)\left(\dfrac{m+n}{4}\right) \\ \\
    y=\dfrac{c(m+n)}{4}
    \end{array}\)
  20. \(\begin{array}{l}
    \\ \\ \\
    \left(\dfrac{rs}{a-3}=k\right)\left(\dfrac{a-3}{s}\right) \\ \\
    r=\dfrac{k(a-3)}{s}
    \end{array}\)
  21. \(\begin{array}{l}
    \\ \\ \\
    \left(V=\dfrac{\pi Dn}{12}\right)\left(\dfrac{12}{\pi n}\right) \\ \\
    D=\dfrac{12V}{\pi n}
    \end{array}\)
  22. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    F\phantom{+kL}&=&kR-kL \\
    +kL&&\phantom{kR}+kL \\
    \hline
    \dfrac{F+kL}{k}&=&\dfrac{kR}{k} \\ \\
    R&=&\dfrac{F+kL}{k}
    \end{array}\)
  23. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    P\phantom{-np}&=&\phantom{-}np-nc \\
    -np&&-np \\
    \hline
    \dfrac{P-np}{-n}&=&\dfrac{-nc}{-n} \\ \\
    c&=&\dfrac{P-np}{-n}
    \end{array}\)
  24. \(\begin{array}{rrrrr}
    \\ \\ \\
    S\phantom{-2B}&=&L&+&2B \\
    -2B&&&-&2B \\
    \hline
    L&=&S&-&2B
    \end{array}\)
  25. \(\phantom{1}\)
    \(\left(T=\dfrac{D-d}{L}\right)(L) \\ \)
    \(\begin{array}{rrrrr}
    TL\phantom{+d}&=&D&-&d \\
    +d&&&+&d \\
    \hline
    D&=&TL&+&d
    \end{array}\)
  26. \(\phantom{1}\)
    \(\left(I=\dfrac{E_a-E_q}{R}\right)(R) \\ \)
    \(\begin{array}{rrrrr}
    IR&=&E_a&-&E_q \\
    +E_q&&&+&E_q \\
    \hline
    E_a&=&IR&+&E_q
    \end{array}\)
  27. \(\begin{array}{rrl}
    \\ \\ \\ \\
    \dfrac{L}{1+at}&=&\dfrac{L_o(1+at)}{1+at} \\ \\
    L_o&=&\dfrac{L}{1+at}
    \end{array}\)
  28. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    2m+p&=&\phantom{-}4m+q \\
    -2m-q&&-2m-q \\
    \hline
    \dfrac{p-q}{2}&=&\dfrac{2m}{2} \\ \\
    m&=&\dfrac{p-q}{2}
    \end{array}\)
  29. \(\phantom{1}\)
    \(\left(\dfrac{k-m}{r}=q\right)(r) \\ \)
    \(\begin{array}{rrl}
    k-m&=&qr \\
    +m&&\phantom{qr}+m \\
    \hline
    k&=&qr+m
    \end{array}\)
  30. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\
    R\phantom{-b}&=&aT&+&b \\
    -b&&&-&b \\
    \hline
    \dfrac{R-b}{a}&=&\dfrac{aT}{a}&& \\ \\
    T&=&\dfrac{R-b}{a}&&
    \end{array}\)
  31. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    Q_1\phantom{+PQ_1}&=&PQ_2-PQ_1 \\
    +PQ_1&&\phantom{PQ_2}+PQ_1 \\
    \hline
    \dfrac{Q_1+PQ_1}{P}&=&\dfrac{PQ_2}{P} \\ \\
    Q_2&=&\dfrac{Q_1+PQ_1}{P}
    \end{array}\)
  32. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    L\phantom{-\pi r_2-2d}&=&\pi r_1+\pi r_2+2d \\
    -\pi r_2-2d&&\phantom{\pi r_1}-\pi r_2-2d \\
    \hline
    \dfrac{L-\pi r_2-2d}{\pi}&=&\dfrac{\pi r_1}{\pi} \\ \\
    r_1&=&\dfrac{L-\pi r_2-2d}{\pi}
    \end{array}\)
  33. \(\phantom{1}\)
    \(\left(R=\dfrac{kA(T+T_1)}{d}\right)\left(\dfrac{d}{kA}\right) \\ \)
    \(\begin{array}{rrl}
    \dfrac{Rd}{kA}\phantom{-T}&=&\phantom{-}T+T_1 \\
    -T&&-T \\
    \hline
    T_1&=&\dfrac{Rd}{kA}-T
    \end{array}\)
  34. \(\phantom{1}\)
    \(\left(P=\dfrac{V_1(V_2-V_1)}{g}\right)\left(\dfrac{g}{V_1}\right) \\ \)
    \(\begin{array}{rrl}
    \dfrac{Pg}{V_1}\phantom{+V_1}&=&V_2-V_1 \\
    +V_1&&\phantom{V_2}+V_1 \\
    \hline
    V_2&=&\dfrac{Pg}{V_1}+V_1
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.