"

Answer Key 2.4

  1. \(\phantom{1}\)
    \(\left(\dfrac{3}{5}\left(1 + p\right) = \dfrac{21}{20}\right)(20) \\ \)
    \(\dfrac{3}{\cancel{5}1}\cdot \cancel{20 }4(1 + p) = \dfrac{21}{\cancel{20}1}\cdot \cancel{20} \\ \)
    \(\begin{array}{rrrrr}
    12&+&12p&=&\phantom{-}21 \\
    -12&&&&-12 \\
    \hline
    &&\dfrac{12p}{12}&=&\dfrac{9}{12} \\ \\
    &&p&=&\dfrac{3}{4}
    \end{array}\)
  2. \(\phantom{1}\)
    \(\left(-\dfrac{1}{2} = \dfrac{3k}{2} + \dfrac{3}{2}\right)(2) \\ \)
    \(\begin{array}{rrrrr}
    -1&=&3k&+&3 \\
    -3&&&-&3 \\
    \hline
    \dfrac{-4}{3}&=&\dfrac{3k}{3}&& \\ \\
    k&=&-\dfrac{4}{3}&&
    \end{array}\)
  3. \(\phantom{1}\)
    \(\left(0 = -\dfrac{5}{4}x+\dfrac{6}{4}\right)(4) \\ \)
    \(\begin{array}{rrlrr}
    0&=&-5x&+&6 \\
    +5x&&+5x&& \\
    \hline
    \dfrac{5x}{5}&=&\dfrac{6}{5}&& \\ \\
    x&=&\dfrac{6}{5}&&
    \end{array}\)
  4. \(\phantom{1}\)
    \(\left(\dfrac{3n}{2} - 8 = -\dfrac{29}{12}\right)(12) \\ \)
    \(\begin{array}{rrrrr}
    18n&-&96&=&-29 \\
    &+&96&&+96 \\
    \hline
    &&\dfrac{18n}{18}&=&\dfrac{67}{18} \\ \\
    &&n&=&\dfrac{67}{18}
    \end{array}\)
  5. \(\phantom{1}\)
    \(\left(\dfrac{3}{4} - \dfrac{5}{4}m = \dfrac{108}{24}\right)(24) \\ \)
    \(\begin{array}{rrrrr}
    18&-&30m&=&108 \\
    -18&&&&-18 \\
    \hline
    &&\dfrac{-30m}{-30}&=&\dfrac{90}{-30} \\ \\
    &&m&=&-3
    \end{array}\)
  6. \(\phantom{1}\)
    \(\left(\dfrac{11}{4} + \dfrac{3}{4}r = \dfrac{160}{32}\right)(32) \\ \)
    \(\begin{array}{crcrr}
    11\cdot 8&+&3r\cdot 8&=&160 \\
    \phantom{-}88&+&24r&=&160 \\
    -88&&&&-88 \\
    \hline
    &&\dfrac{24r}{24}&=&\dfrac{72}{24} \\ \\
    &&r&=&3
    \end{array}\)
  7. \(\phantom{1}\)
    \(\left(2b + \dfrac{9}{5} = -\dfrac{11}{5}\right)(5) \\ \)
    \(\begin{array}{rrrrr}
    10b&+&9&=&-11 \\
    &-&9&&-9 \\
    \hline
    &&\dfrac{10b}{10}&=&\dfrac{-20}{10} \\ \\
    &&b&=&-2
    \end{array}\)
  8. \(\phantom{1}\)
    \(\left(\dfrac{3}{2} - \dfrac{7v}{4} = -\dfrac{9}{8}\right)(8) \\ \)
    \(\begin{array}{rrrrr}
    3\cdot 4&-&7r\cdot 2&=&-9 \\
    \phantom{-}12&-&14r&=&-9 \\
    -12&&&&-12 \\
    \hline
    &&\dfrac{-14r}{-14}&=&\dfrac{-21}{-14} \\ \\
    &&r&=&\dfrac{3}{2}
    \end{array}\)
  9. \(\phantom{1}\)
    \(\left(\dfrac{21n}{6}+\dfrac{3}{2} = \dfrac{3}{2}\right)(6) \\ \)
    \(\begin{array}{rrrrr}
    \dfrac{21n}{6}&+&3\cdot 3&=&3\cdot 3 \\
    &-&9&&-9 \\
    \hline
    &&\dfrac{21n}{6}&=&0 \\ \\
    &&n&=&0
    \end{array}\)
  10. \(\phantom{1}\)
    \(\left(\dfrac{41}{9} = \dfrac{5}{2}x+\dfrac{10}{6} - \dfrac{1}{3}x\right)(18) \\ \)
    \(\begin{array}{rrlrrrr}
    41\cdot 2&=&5x\cdot 9&+&10\cdot 3&-&x\cdot 6 \\
    82&=&45x&+&30&-&6x \\
    -30&&&-&30&& \\
    \hline
    \dfrac{52}{39}&=&\dfrac{39x}{39}&&&& \\ \\
    x&=&\dfrac{4}{3}&&&&
    \end{array}\)
  11. \(\phantom{1}\)
    \(\left(-a + \dfrac{40a}{12}-\dfrac{5}{4}= -\dfrac{19}{4}\right)(12) \\ \)
    \(\begin{array}{rrrrrrr}
    -12a&+&40a&-&15&=&-57 \\
    &&&+&15&&+15 \\
    \hline
    &&&&\dfrac{28a}{28}&=&\dfrac{-42}{28} \\ \\
    &&&&a&=&-\dfrac{3}{2}
    \end{array}\)
  12. \(\phantom{1}\)
    \(\left(-\dfrac{7k}{12}+\dfrac{1}{3}-\dfrac{10k}{3}=-\dfrac{13}{8} \right)(24) \\ \)
    \(\begin{array}{rrrrrrr}
    -14k&+&8&-&80k&=&-39 \\
    &-&8&&&&-8 \\
    \hline
    &&&&\dfrac{-94k}{-94}&=&\dfrac{-47}{-94} \\ \\
    &&&&k&=&\dfrac{1}{2}
    \end{array}\)
  13. \(\phantom{1}\)
    \(\left(\dfrac{55}{6} = -\dfrac{15p}{4}+\dfrac{25}{6}\right)(12) \\ \)
    \(\begin{array}{rrlrr}
    110&=&-45p&+&50 \\
    -50&&&-&50 \\
    \hline
    \dfrac{60}{-45}&=&\dfrac{-45p}{-45}&& \\ \\
    p&=&-\dfrac{4}{3}&&
    \end{array}\)
  14. \(\phantom{1}\)
    \(\left(-\dfrac{2x}{6}+\dfrac{3}{8}-\dfrac{7x}{2}=-\dfrac{83}{24}\right)(24) \\ \)
    \(\begin{array}{rrrrrrr}
    -8x&+&9&-&84x&=&-83 \\
    &-&9&&&&-9 \\
    \hline
    &&&&\dfrac{-92x}{-92}&=&\dfrac{-92}{-92} \\ \\
    &&&&x&=&1
    \end{array}\)
  15. \(\phantom{1}\)
    \(\left(-\dfrac{5}{8}=\dfrac{5}{4}r-\dfrac{15}{8}\right)(8) \\ \)
    \(\begin{array}{rrlrr}
    -5&=&10r&-&15 \\
    +15&&&+&15 \\
    \hline
    \dfrac{10}{10}&=&\dfrac{10r}{10}&& \\ \\
    r&=&1&&
    \end{array}\)
  16. \(\phantom{1}\)
    \(\left(\dfrac{1}{12}=\dfrac{4x}{3}+\dfrac{5x}{3}-\dfrac{35}{12}\right)(12) \\ \)
    \(\begin{array}{rrlrrrr}
    1&=&16x&+&20x&-&35 \\
    +35&&&&&+&35 \\
    \hline
    \dfrac{36}{36}&=&\dfrac{36x}{36}&&&& \\ \\
    x&=&1&&&&
    \end{array}\)
  17. \(\phantom{1}\)
    \(\left(-\dfrac{11}{3}+\dfrac{3b}{2}=\dfrac{5b}{2}-\dfrac{25}{6}\right)(6) \\ \)
    \(\begin{array}{rrrrrrr}
    -22&+&9b&=&15b&-&25 \\
    +22&-&15b&&-15b&+&22 \\
    \hline
    &&\dfrac{-6b}{-6}&=&\dfrac{-3}{-6}&& \\ \\
    &&b&=&\dfrac{1}{2}&&
    \end{array}\)
  18. \(\phantom{1}\)
    \(\left(\dfrac{7}{6}-\dfrac{4n}{3}=-\dfrac{3n}{2}+2n+3\right)(6) \\ \)
    \(\begin{array}{rrrrlrrrr}
    7&-&8n&=&-9n&+&12n&+&18 \\
    -7&+&9n&&+9n&-&12n&-&7 \\
    &-&12n&&&&&& \\
    \hline
    &&\dfrac{-11n}{-11}&=&\dfrac{11}{-11}&&&& \\ \\
    &&n&=&-1&&&&
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.