Answer Key 2.2
- \(\begin{array}{rrrrl}
\\ \\ \\ \\
5&+&\dfrac{n}{4}&=&\phantom{-}4 \\
-5&&&&-5 \\
\hline
&&4 \left(\dfrac{n}{4}\right)&=&(-1)4 \\ \\
&&n&=&-4
\end{array}\) - \(\begin{array}{rrlrr}
\\ \\ \\ \\ \\
-2&=&-2m&+&12 \\
-12&&&-&12 \\
\hline
\dfrac{-14}{-2}&=&\dfrac{-2m}{-2}&& \\ \\
m&=&7&&
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\
102&=&-7r&+&4 \\
-4&&&-&4 \\
\hline
\dfrac{98}{-7}&=&\dfrac{-7r}{-7}&& \\ \\
r&=&-14&&
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\
27&=&21&-&3x \\
-21&&-21&& \\
\hline
\dfrac{6}{-3}&=&\dfrac{-3x}{-3}&& \\ \\
x&=&-2&&
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\
-8n&+&3&=&-77 \\
&-&3&&-3 \\
\hline
&&\dfrac{-8n}{-8}&=&\dfrac{-80}{-8} \\ \\
&&n&=&10
\end{array}\) - \(\begin{array}{rrrrl}
\\ \\ \\
-4&-&b&=&\phantom{+}8 \\
+4&&&&+4 \\
\hline
&&(-b&=&\phantom{-}12)(-1) \\
&&b&=&-12
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\
\dfrac{0}{-6}&=&\dfrac{-6v}{-6} \\ \\
v&=&0
\end{array}\) - \(\begin{array}{rrcrl}
\\ \\ \\ \\ \\
-2&+&\dfrac{x}{2}&=&\phantom{+}4 \\
+2&&&&+2 \\
\hline
&&2\left(\dfrac{x}{2}\right)&=&\phantom{+}(6)2 \\ \\
&&x&=&12
\end{array}\) - \(\begin{array}{rrcrr}
\\ \\ \\ \\ \\
-8&=&\dfrac{x}{5}&-&6 \\
+6&&&+&6 \\
\hline
5(-2)&=&\left(\dfrac{x}{5}\right) 5&& \\ \\
x&=&-10&&
\end{array}\) - \(\begin{array}{rrcrr}
\\ \\ \\ \\ \\
-5&=&\dfrac{a}{4}&-&1 \\
+1&&&+&1 \\
\hline
4(-4)&=&\left(\dfrac{a}{4}\right) 4&& \\ \\
a&=&-16&&
\end{array}\) - \(\begin{array}{rrcrr}
\\ \\ \\ \\ \\
0&=&-7&+&\dfrac{k}{2} \\
+7&&+7&& \\
\hline
2(7)&=&\left(\dfrac{k}{2}\right)2&& \\ \\
k&=&14&&
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\
-6&=&15&+&3p \\
-15&&-15&& \\
\hline
\dfrac{-21}{3}&=&\dfrac{3p}{3}&& \\ \\
p&=&-7&&
\end{array}\) - \(\begin{array}{rrrrl}
\\ \\ \\ \\ \\
-12&+&3x&=&\phantom{+1}0 \\
+12&&&&+12 \\
\hline
&&\dfrac{3x}{3}&=&\dfrac{12}{3} \\ \\
&&x&=&4
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\
-5m&+&2&=&27 \\
&-&2&&-2 \\
\hline
&&\dfrac{-5m}{-5}&=&\dfrac{25}{-5} \\ \\
&&m&=&-5
\end{array}\)