Answer Key 11.7
[latexpage]
- 0.743145
- 0.484810
- 0.906308
- 0.484810
- 0.194380
- 1.53986
- 0.190810
- 0.544639
- 29°
- 39°
- 50°
- 52°
- 33.3°
- 8.9°
- 41°
- 81°
- \(\begin{array}{ll}
\\ \\
\begin{array}{rrl}
\\ \\
20^2+10^2&=&z^2 \\ \\
z&=&\sqrt{500} \\ \\
z&=&22.36\dots
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
\\ \\ \\ \\
\text{tan }{\O}&=&\dfrac{\text{opp}}{\text{adj}} \\ \\
\text{tan }{\O}&=&\dfrac{10}{20} \\ \\
{\O}&=&\text{tan }^{-1} 0.5 \\ \\
{\O}&=&26.6^{\circ}
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrl}
\\ \\ \\
20^2+y^2&=&28^2 \\ \\
y&=&\sqrt{28^2-20^2} \\ \\
y&=&\sqrt{384} \\ \\
y&=&19.6
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
\\ \\ \\ \\
\text{cos }{\O}&=&\dfrac{A}{H} \\ \\
\text{cos }{\O}&=&\dfrac{20}{28} \\ \\
{\O}&=&\text{cos }^{-1} \left(\dfrac{20}{28}\right) \\ \\
{\O}&=&44.4^{\circ}
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrl}
\\ \\ \\ \\
\text{cos }{\O}&=&\dfrac{A}{H} \\ \\
\text{cos }{\O}&=&\dfrac{12}{20} \\ \\
{\O}&=&\text{cos }^{-1} \left(\dfrac{12}{20}\right) \\ \\
{\O}&=&53.1^{\circ}
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
12^2+x^2&=&20^2 \\ \\
x&=&\sqrt{20^2-12^2} \\ \\
x&=&16
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrl}
\text{cos }32&=&\dfrac{x}{25} \\ \\
x&=&25\text{ cos }32 \\ \\
x&=&21.2
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
\text{sin }32^{\circ}&=&\dfrac{y}{25} \\ \\
y&=&25\text{ sin }32 \\ \\
y&=&13.2
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrl}
\text{cos }42^{\circ}&=&\dfrac{x}{1200N} \\ \\
x&=&1200N\text{ cos }42^{\circ} \\ \\
x&=&891.8 N
\end{array}
& \hspace{0.5in}
\begin{array}{rrl}
\text{sin }42^{\circ}&=&\dfrac{y}{1200N} \\ \\
y&=&1200N\text{ sin }42^{\circ} \\ \\
y&=&803N
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrl}
\text{tan }{\O}&=&\dfrac{100N}{220N} \\ \\
{\O}&=&\text{tan}^{-1}\left(\dfrac{100}{220}\right) \\ \\
{\O}&=&24.4^{\circ}
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
z^2&=&100^2+220^2 \\ \\
z&=&\sqrt{58400} \\ \\
z&=&241.7
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrl}
\text{cos }55^{\circ}&=&\dfrac{y}{12} \\ \\
y&=&12\text{ cos }55^{\circ} \\ \\
y&=&6.9
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
\text{sin }55^{\circ}&=&\dfrac{x}{12} \\ \\
x&=&12\text{ sin }55^{\circ} \\ \\
x&=&9.8
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrl}
\text{tan }28&=&\dfrac{20}{x} \\ \\
x&=&\dfrac{20}{\text{tan }28} \\ \\
x&=&37.6
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
\text{sin }28^{\circ}&=&\dfrac{20}{z} \\ \\
z&=&\dfrac{20}{\text{sin }28} \\ \\
z&=&42.6
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrl}
\text{tan }{\O}&=&\dfrac{20}{15} \\ \\
{\O}&=&\text{tan}^{-1}\left(\dfrac{20}{15}\right) \\ \\
{\O}&=&53.1^{\circ}
\end{array}
& \hspace{0.5in}
\begin{array}{rrl}
15^2+20^2&=&z^2 \\ \\
z&=&\sqrt{625} \\ \\
z&=&25
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrl}
y^2+100^2&=&125^2 \\ \\
y&=&\sqrt{125^2-100^2} \\ \\
y&=&75
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
\text{cos }{\O}&=&\dfrac{100}{125} \\ \\
{\O}&=&\text{cos}^{-1}\left(\dfrac{100}{125}\right) \\ \\
{\O}&=&36.9^{\circ}
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrl}
\text{cos }{\O}&=&\dfrac{3}{5} \\ \\
{\O}&=&\text{cos }^{-1}\left(\dfrac{3}{5}\right) \\ \\
{\O}&=&53.1
\end{array}
& \hspace{0.5in}
\begin{array}{rrl}
3^2+y^2&=&5^2 \\ \\
y&=&\sqrt{5^2-3^2} \\ \\
y&=&4
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrl}
\text{cos }24^{\circ}&=&\dfrac{25}{z} \\ \\
z&=&\dfrac{25}{\text{cos }24^{\circ}} \\ \\
z&=&27.4
\end{array}
& \hspace{0.5in}
\begin{array}{rrl}
\text{tan }24^{\circ}&=&\dfrac{y}{25} \\ \\
y&=&25\text{ tan }24^{\circ} \\ \\
y&=&11.1
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrl}
\text{sin }{\O}&=&\dfrac{28}{40} \\ \\
{\O}&=&\text{sin }^{-1}\left(\dfrac{28}{40}\right) \\ \\
{\O}&=&44.4^{\circ}
\end{array}
&\hspace{0.25in}
\begin{array}{rrl}
z^2+28^2&=&40^2 \\ \\
z&=&\sqrt{40^2-28^2} \\ \\
z&=&28.6
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrl}
\text{cos }{\O}&=&\dfrac{20}{28} \\ \\
{\O}&=&\text{cos }^{-1}\left(\dfrac{20}{28}\right) \\ \\
{\O}&=&44.4^{\circ}
\end{array}
& \hspace{0.5in}
\begin{array}{rrl}
20^2+y^2&=&28^2 \\ \\
y&=&\sqrt{28^2-20^2} \\ \\
y&=&19.6
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrl}
\text{sin }{\O}&=&\dfrac{8}{12} \\ \\
{\O}&=&\text{sin}^{-1}\left(\dfrac{8}{12}\right) \\ \\
{\O}&=&41.8^{\circ}
\end{array}
& \hspace{0.5in}
\begin{array}{rrl}
y^2+8^2&=&12^2 \\ \\
y&=&\sqrt{12^2-8^2} \\ \\
y&=&8.9
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrl}
\text{tan }35^{\circ}&=&\dfrac{x}{50} \\ \\
x&=&50\text{ tan }35^{\circ} \\ \\
x&=&35
\end{array}
&\hspace{0.5in}
\begin{array}{rrl}
\text{cos }35^{\circ}&=&\dfrac{50}{y} \\ \\
y&=&\dfrac{50}{\text{cos }35^{\circ}} \\ \\
y&=&61
\end{array}
\end{array}\)