"

Answer Key 11.7

[latexpage]

  1. 0.743145
  2. 0.484810
  3. 0.906308
  4. 0.484810
  5. 0.194380
  6. 1.53986
  7. 0.190810
  8. 0.544639
  9. 29°
  10. 39°
  11. 50°
  12. 52°
  13. 33.3°
  14. 8.9°
  15. 41°
  16. 81°

 

  1. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    \\ \\
    20^2+10^2&=&z^2 \\ \\
    z&=&\sqrt{500} \\ \\
    z&=&22.36\dots
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    \\ \\ \\ \\
    \text{tan }{\O}&=&\dfrac{\text{opp}}{\text{adj}} \\ \\
    \text{tan }{\O}&=&\dfrac{10}{20} \\ \\
    {\O}&=&\text{tan }^{-1} 0.5 \\ \\
    {\O}&=&26.6^{\circ}
    \end{array}
    \end{array}\)
  2. \(\begin{array}{ll}
    \\ \\ \\
    \begin{array}{rrl}
    \\ \\ \\
    20^2+y^2&=&28^2 \\ \\
    y&=&\sqrt{28^2-20^2} \\ \\
    y&=&\sqrt{384} \\ \\
    y&=&19.6
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    \\ \\ \\ \\
    \text{cos }{\O}&=&\dfrac{A}{H} \\ \\
    \text{cos }{\O}&=&\dfrac{20}{28} \\ \\
    {\O}&=&\text{cos }^{-1} \left(\dfrac{20}{28}\right) \\ \\
    {\O}&=&44.4^{\circ}
    \end{array}
    \end{array}\)
  3. \(\begin{array}{ll}
    \\ \\ \\
    \begin{array}{rrl}
    \\ \\ \\ \\
    \text{cos }{\O}&=&\dfrac{A}{H} \\ \\
    \text{cos }{\O}&=&\dfrac{12}{20} \\ \\
    {\O}&=&\text{cos }^{-1} \left(\dfrac{12}{20}\right) \\ \\
    {\O}&=&53.1^{\circ}
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    12^2+x^2&=&20^2 \\ \\
    x&=&\sqrt{20^2-12^2} \\ \\
    x&=&16
    \end{array}
    \end{array}\)
  4. \(\begin{array}{ll}
    \\ \\ \\ \\
    \begin{array}{rrl}
    \text{cos }32&=&\dfrac{x}{25} \\ \\
    x&=&25\text{ cos }32 \\ \\
    x&=&21.2
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    \text{sin }32^{\circ}&=&\dfrac{y}{25} \\ \\
    y&=&25\text{ sin }32 \\ \\
    y&=&13.2
    \end{array}
    \end{array}\)
  5. \(\begin{array}{ll}
    \\ \\ \\ \\
    \begin{array}{rrl}
    \text{cos }42^{\circ}&=&\dfrac{x}{1200N} \\ \\
    x&=&1200N\text{ cos }42^{\circ} \\ \\
    x&=&891.8 N
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    \text{sin }42^{\circ}&=&\dfrac{y}{1200N} \\ \\
    y&=&1200N\text{ sin }42^{\circ} \\ \\
    y&=&803N
    \end{array}
    \end{array}\)
  6. \(\begin{array}{ll}
    \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \text{tan }{\O}&=&\dfrac{100N}{220N} \\ \\
    {\O}&=&\text{tan}^{-1}\left(\dfrac{100}{220}\right) \\ \\
    {\O}&=&24.4^{\circ}
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    z^2&=&100^2+220^2 \\ \\
    z&=&\sqrt{58400} \\ \\
    z&=&241.7
    \end{array}
    \end{array}\)
  7. \(\begin{array}{ll}
    \\ \\ \\ \\
    \begin{array}{rrl}
    \text{cos }55^{\circ}&=&\dfrac{y}{12} \\ \\
    y&=&12\text{ cos }55^{\circ} \\ \\
    y&=&6.9
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    \text{sin }55^{\circ}&=&\dfrac{x}{12} \\ \\
    x&=&12\text{ sin }55^{\circ} \\ \\
    x&=&9.8
    \end{array}
    \end{array}\)
  8. \(\begin{array}{ll}
    \\ \\ \\ \\
    \begin{array}{rrl}
    \text{tan }28&=&\dfrac{20}{x} \\ \\
    x&=&\dfrac{20}{\text{tan }28} \\ \\
    x&=&37.6
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    \text{sin }28^{\circ}&=&\dfrac{20}{z} \\ \\
    z&=&\dfrac{20}{\text{sin }28} \\ \\
    z&=&42.6
    \end{array}
    \end{array}\)
  9. \(\begin{array}{ll}
    \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \text{tan }{\O}&=&\dfrac{20}{15} \\ \\
    {\O}&=&\text{tan}^{-1}\left(\dfrac{20}{15}\right) \\ \\
    {\O}&=&53.1^{\circ}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    15^2+20^2&=&z^2 \\ \\
    z&=&\sqrt{625} \\ \\
    z&=&25
    \end{array}
    \end{array}\)
  10. \(\begin{array}{ll}
    \\ \\ \\ \\
    \begin{array}{rrl}
    y^2+100^2&=&125^2 \\ \\
    y&=&\sqrt{125^2-100^2} \\ \\
    y&=&75
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    \text{cos }{\O}&=&\dfrac{100}{125} \\ \\
    {\O}&=&\text{cos}^{-1}\left(\dfrac{100}{125}\right) \\ \\
    {\O}&=&36.9^{\circ}
    \end{array}
    \end{array}\)
  11. \(\begin{array}{ll}
    \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \text{cos }{\O}&=&\dfrac{3}{5} \\ \\
    {\O}&=&\text{cos }^{-1}\left(\dfrac{3}{5}\right) \\ \\
    {\O}&=&53.1
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    3^2+y^2&=&5^2 \\ \\
    y&=&\sqrt{5^2-3^2} \\ \\
    y&=&4
    \end{array}
    \end{array}\)
  12. \(\begin{array}{ll}
    \\ \\ \\ \\
    \begin{array}{rrl}
    \text{cos }24^{\circ}&=&\dfrac{25}{z} \\ \\
    z&=&\dfrac{25}{\text{cos }24^{\circ}} \\ \\
    z&=&27.4
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    \text{tan }24^{\circ}&=&\dfrac{y}{25} \\ \\
    y&=&25\text{ tan }24^{\circ} \\ \\
    y&=&11.1
    \end{array}
    \end{array}\)
  13. \(\begin{array}{ll}
    \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \text{sin }{\O}&=&\dfrac{28}{40} \\ \\
    {\O}&=&\text{sin }^{-1}\left(\dfrac{28}{40}\right) \\ \\
    {\O}&=&44.4^{\circ}
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    z^2+28^2&=&40^2 \\ \\
    z&=&\sqrt{40^2-28^2} \\ \\
    z&=&28.6
    \end{array}
    \end{array}\)
  14. \(\begin{array}{ll}
    \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \text{cos }{\O}&=&\dfrac{20}{28} \\ \\
    {\O}&=&\text{cos }^{-1}\left(\dfrac{20}{28}\right) \\ \\
    {\O}&=&44.4^{\circ}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    20^2+y^2&=&28^2 \\ \\
    y&=&\sqrt{28^2-20^2} \\ \\
    y&=&19.6
    \end{array}
    \end{array}\)
  15. \(\begin{array}{ll}
    \\ \\ \\ \\ \\
    \begin{array}{rrl}
    \text{sin }{\O}&=&\dfrac{8}{12} \\ \\
    {\O}&=&\text{sin}^{-1}\left(\dfrac{8}{12}\right) \\ \\
    {\O}&=&41.8^{\circ}
    \end{array}
    & \hspace{0.5in}
    \begin{array}{rrl}
    y^2+8^2&=&12^2 \\ \\
    y&=&\sqrt{12^2-8^2} \\ \\
    y&=&8.9
    \end{array}
    \end{array}\)
  16. \(\begin{array}{ll}
    \\ \\ \\ \\
    \begin{array}{rrl}
    \text{tan }35^{\circ}&=&\dfrac{x}{50} \\ \\
    x&=&50\text{ tan }35^{\circ} \\ \\
    x&=&35
    \end{array}
    &\hspace{0.5in}
    \begin{array}{rrl}
    \text{cos }35^{\circ}&=&\dfrac{50}{y} \\ \\
    y&=&\dfrac{50}{\text{cos }35^{\circ}} \\ \\
    y&=&61
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.