"

Answer Key 11.5

[latexpage]

  1. \(9^2=81\)
  2. \(b^{-16}=a\)
  3. \(\left(\dfrac{1}{49}\right)^{-2}=7\)
  4. \(16^2=256\)
  5. \(13^2=169\)
  6. \(11^0=1\)
  7. \(\log_{8}1=0\)
  8. \(\log_{17}\dfrac{1}{289}=-2\)
  9. \(\log_{15}225=2\)
  10. \(\log_{144}12=\dfrac{1}{2}\)
  11. \(\log_{64}2=\dfrac{1}{6}\)
  12. \(\log_{19}361=2\)
  13. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    \log_{125}5&=&x \\
    125^x&=&5 \\
    5^{3x}&=&5 \\
    3x&=&1 \\ \\
    x&=&\dfrac{1}{3}
    \end{array}\)
  14. \(\begin{array}{rrl}
    \\ \\ \\
    \log_{5}125&=&x \\
    5^x&=&125 \\
    5^x&=&5^3 \\
    x&=&3
    \end{array}\)
  15. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    \log_{343}\dfrac{1}{7}&=&x \\ \\
    343^x&=&\dfrac{1}{7} \\ \\
    7^{3x}&=&7^{-1} \\ \\
    3x&=&-1 \\ \\
    x&=&-\dfrac{1}{3}
    \end{array}\)
  16. \(\begin{array}{rrl}
    \\ \\ \\
    \log_{7}1&=&x \\
    7^x&=&1 \\
    7^x&=&7^0 \\
    x&=&0
    \end{array}\)
  17. \(\begin{array}{rrl}
    \\ \\ \\
    \log_{4}16&=&x \\
    4^x&=&16 \\
    4^x&=&4^2 \\
    x&=&2
    \end{array}\)
  18. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    \log_{4} \dfrac{1}{64}&=&x \\ \\
    4^x&=&\dfrac{1}{64} \\ \\
    4^x&=&4^{-3} \\
    x&=& -3
    \end{array}\)
  19. \(\begin{array}{rrl}
    \\ \\ \\
    \log_{6}36&=&x \\
    6^x&=&36 \\
    6^x&=&6^2 \\
    x&=& 2
    \end{array}\)
  20. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    \log_{36}6&=&x \\
    36^x&=&6 \\
    6^{2x}&=&6^1 \\
    2x&=&1 \\ \\
    x&=& \dfrac{1}{2}
    \end{array}\)
  21. \(\begin{array}{rrl}
    \\ \\ \\
    \log_{2}64&=&x \\
    2^x&=&64 \\
    2^x&=&2^6 \\
    x&=& 6
    \end{array}\)
  22. \(\begin{array}{rrl}
    \\ \\ \\
    \log_{3}243 &=&x \\
    3^x&=&243 \\
    3^x&=&3^5 \\
    x&=&5
    \end{array}\)
  23. \(\begin{array}{rrl}
    \\
    5^1&=& x \\
    x&=&5
    \end{array}\)
  24. \(\begin{array}{rrl}
    \\
    8^3&=& k \\
    k&=&512
    \end{array}\)
  25. \(\begin{array}{rrl}
    \\ \\
    2^{-2}&=&x \\ \\
    x&=&\dfrac{1}{4}
    \end{array}\)
  26. \(\begin{array}{rrl}
    \\
    10^3&=& \\
    n&=&1000
    \end{array}\)
  27. \(\begin{array}{rrl}
    \\
    11^2&=&k \\
    k&=&121
    \end{array}\)
  28. \(\begin{array}{rrl}
    \\
    4^4&=& p \\
    p&=&256
    \end{array}\)
  29. \(\begin{array}{rrrrr}
    \\ \\ \\ \\
    9^4&=&n&+&9 \\
    -9&&&-&9 \\
    \midrule
    n&=&9^4&-&9 \\
    n&=&6561&-&9 \\
    n&=&6552&&
    \end{array}\)
  30. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\
    11^{-1}&=&x&-&4 \\
    +4&&&+&4 \\
    \midrule
    x&=&4&+&\dfrac{1}{11} \\ \\
    x&=&4\dfrac{1}{11}&&
    \end{array}\)
  31. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    5^3&=&-3m \\ \\
    m&=&\dfrac{5^3}{-3} \\ \\
    m&=&-\dfrac{125}{3}
    \end{array}\)
  32. \(\begin{array}{rrl}
    \\ \\
    2^1&=&-8r \\ \\
    r&=&\dfrac{2}{-8} \Rightarrow -\dfrac{1}{4}
    \end{array}\)
  33. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\
    11^{-1}&=&x&+&5 \\
    -5&&&-&5 \\
    \midrule
    x&=&-5&+&\dfrac{1}{11} \\ \\
    x&=&-4\dfrac{10}{11}&&
    \end{array}\)
  34. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    7^4&=&-3n \\ \\
    n&=&\dfrac{7^4}{-3} \\ \\
    n&=&-\dfrac{2401}{3}
    \end{array}\)
  35. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\
    4^0&=&6b&+&4 \\
    -4&&&-&4 \\
    \midrule
    6b&=&-4&+&1 \\
    6b&=&-3&& \\ \\
    b&=&-\dfrac{1}{2}&&
    \end{array}\)
  36. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    11^{-1}&=&10v&+&1 \\
    -1&&&-&1 \\
    \midrule
    10v&=&-1&+&\dfrac{1}{11} \\ \\
    10v&=&-\dfrac{10}{11}&& \\ \\
    v&=&-\dfrac{1}{11}
    \end{array}\)
  37. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\ \\
    5^4&=&-10x&+&4 \\
    625&=&-10x&+&4 \\
    -4&&&-&4 \\
    \midrule
    \dfrac{621}{-10}&=&\dfrac{-10x}{-10}&& \\ \\
    x&=&-\dfrac{621}{10}&& \\
    \end{array}\)
  38. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    9^{-2}&=&7&-&6x \\
    -7&&-7&& \\
    \midrule
    -6x&=&-7&+&\dfrac{1}{81} \\ \\
    -6x&=&-\dfrac{566}{81}&& \\ \\
    x&=&\dfrac{566}{81\cdot 6}&& \\ \\
    x&=&\dfrac{566}{486}&& \\ \\
    x&=&\dfrac{283}{243}&&
    \end{array}\)
  39. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\
    2^3&=&10&-&5a \\
    -10&&-10&& \\
    \midrule
    -5a&=&8&-&10 \\
    -5a&=&-2&& \\ \\
    a&=&\dfrac{2}{5}&&
    \end{array}\)
  40. \(\begin{array}{rrlrr}
    \\ \\ \\
    8&=&3k&-&1 \\
    +1&&&+&1 \\
    \midrule
    9&=&3k&& \\
    k&=&3&&
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.