"

Answer Key 11.3

[latexpage]

  1. \(\begin{array}{rrl}
    \\ \\ \\
    (g\circ f)(x)&=&-(\sqrt[5]{-x-3})^5-3 \\
    &=&-(-x-3)-3 \\
    &=&x+3-3 \\
    &=&x\hspace{0.75in}\text{Inverse}
    \end{array}\)
  2. \(\begin{array}{rrl}
    \\ \\ \\
    (g\circ f)(x)&=&4-\left(\dfrac{4}{x}\right) \\ \\
    &=&4-\dfrac{4}{x}\hspace{0.5in}\text{Not inverse}
    \end{array}\)
  3. \(\begin{array}{rrl}
    \\ \\ \\ \\
    (g\circ f)(x)&=&-10\left(\dfrac{x-5}{10}\right)+5 \\ \\
    &=& -x+5+5\\ \\
    &=&-x+10\hspace{0.75in}\text{Not inverse}
    \end{array}\)
  4. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\
    (f\circ g)(x)&=&\dfrac{(10x+5)-5}{10} \\ \\
    &=&\dfrac{10x+5-5}{10} \\ \\
    &=&\dfrac{10x}{10} \\ \\
    &=&x\hspace{0.75in}\text{Inverse}
    \end{array}\)
  5. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    (f\circ g)(x)&=&\dfrac{-2}{\dfrac{3x+2}{x+2}+3} \\ \\
    &=& \dfrac{-2(x+2)}{3x+2+3(x+2)}\\ \\
    &=& \dfrac{-2x-4}{3x+2+3x+6}\\ \\
    &=& \dfrac{-2x-4}{6x+8}\\ \\
    &=& \dfrac{-x-2}{3x+4}\hspace{0.75in}\text{Not inverse}
    \end{array}\)
  6. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    (f\circ g)&=&\dfrac{-\left(\dfrac{-2x+1}{-x-1}\right)-1}{\dfrac{-2x+1}{-x-1}-2} \\ \\
    &=&\dfrac{-(-2x+1)-1(-x-1)}{-2x+1-2(-x-1)} \\ \\
    &=&\dfrac{2x-1+x+1}{-2x+1+2x+2} \\ \\
    &=&\dfrac{3x}{3} \\ \\
    &=&x\hspace{0.75in}\text{Inverse}
    \end{array}\)
  7. \(\begin{array}{rrcrr}
    \\ \\ \\ \\ \\ \\
    y&=&(x-2)^5&+&3 \\
    x&=&(y-2)^5&+&3 \\
    -3&&&-&3 \\
    \midrule
    x-3&=&(y-2)^5&& \\
    \sqrt[5]{x-3}&=&y-2&& \\ \\
    y&=&\sqrt[5]{x-3}&+&2
    \end{array}\)
  8. \(\begin{array}{rrcrr}
    \\ \\ \\ \\ \\ \\
    y&=&\sqrt[3]{x+1}&+&2 \\
    x&=&\sqrt[3]{y+1}&+&2 \\
    -2&&&-&2 \\
    \midrule
    x-2&=&\sqrt[3]{y+1}&& \\
    (x-2)^3&=&y+1&& \\ \\
    y&=&(x-2)^3&-&1
    \end{array}\)
  9. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{4}{x+2} \\ \\
    x&=&\dfrac{4}{y+2} \\ \\
    y+2&=&\dfrac{4}{x} \\ \\
    y&=&\dfrac{4}{x}-2
    \end{array}\)
  10. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{3}{x-3} \\ \\
    x&=&\dfrac{3}{y-3} \\ \\
    y-3&=&\dfrac{3}{x} \\ \\
    y&=&\dfrac{3}{x}+3
    \end{array}\)
  11. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{-2x-2}{x+2} \\ \\
    x&=&\dfrac{-2y-2}{y+2} \\ \\
    x(y+2)&=&-2y-2 \\
    xy+2x&=&-2y-2 \\
    -xy+2&&-xy+2 \\
    \midrule
    2x+2&=&-2y-xy \\
    2x+2&=&y(-2-x) \\ \\
    y&=&\dfrac{2x+2}{-2-x} \\ \\
    y&=&-\dfrac{2x+2}{2+x}
    \end{array}\)
  12. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    y&=&\dfrac{9+x}{3} \\ \\
    x&=&\dfrac{9+y}{3} \\ \\
    3x&=&9+y \\
    y&=&3x-9
    \end{array}\)
  13. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    y&=&\dfrac{10-x}{5} \\ \\
    x&=&\dfrac{10-y}{5} \\ \\
    5x&=&10-y \\
    y&=&10-5x
    \end{array}\)
  14. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{5x-15}{2} \\ \\
    x&=&\dfrac{5y-15}{2} \\ \\
    5y-15&=&2x \\ \\
    5y&=&2x+15 \\ \\
    y&=&\dfrac{2x+15}{5}
    \end{array}\)
  15. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    y&=&-(x-1)^3 \\
    x&=&-(y-1)^3 \\
    \sqrt[3]{x}&=&-(y-1) \\
    \sqrt[3]{x}&=&-y+1 \\
    -y&=&\sqrt[3]{x}-1 \\ \\
    y&=&1-\sqrt[3]{x}
    \end{array}\)
  16. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{12-3x}{4} \\ \\
    x&=&\dfrac{12-3y}{4} \\ \\
    4x&=&12-3y \\ \\
    3y&=&12-4x \\ \\
    y&=&\dfrac{12-4x}{3} \\ \\
    y&=&4-\dfrac{4}{3}x
    \end{array}\)
  17. \(\begin{array}{rrl}
    \\ \\ \\ \\
    y&=&(x-3)^3 \\
    x&=&(y-3)^3 \\
    \sqrt[3]{x}&=&y-3 \\ \\
    y&=&\sqrt[3]{x}+3
    \end{array}\)
  18. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    y&=&\sqrt[5]{-x}+2 \\
    x&=&\sqrt[5]{-y}+2 \\
    x-2&=&\sqrt[5]{-y} \\
    (x-2)^5&=&-y \\ \\
    y&=&-(x-2)^5
    \end{array}\)
  19. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{x}{x-1} \\ \\
    x&=&\dfrac{y}{y-1} \\ \\
    x(y-1)&=&y \\ \\
    xy-x&=&y \\ \\
    y-xy&=&-x \\ \\
    y(1-x)&=&-x \\ \\
    y&=&\dfrac{-x}{1-x} \\ \\
    y&=&\dfrac{x}{x-1}
    \end{array}\)
  20. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{-3-2x}{x+3} \\ \\
    x&=&\dfrac{-3-2y}{y+3} \\ \\
    x(y+3)&=&-3-2y \\
    xy+3x&=&-3-2y \\
    +2y-3x&&-3x+2y \\
    \midrule
    xy+2y&=&-3-3x \\
    y(x+2)&=&-3-3x \\ \\
    y&=&\dfrac{-3-3x}{x+2} \\ \\
    y&=&-\dfrac{3x+3}{x+2}
    \end{array}\)
  21. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{x-1}{x+1} \\ \\
    x&=&\dfrac{y-1}{y+1} \\ \\
    x(y+1)&=&y-1 \\
    xy+x&=&y-1 \\
    xy-y&=&-x-1 \\
    y(x-1)&=&-x-1 \\ \\
    y&=&\dfrac{-x-1}{x-1} \\ \\
    y&=&-\dfrac{x+1}{x-1}
    \end{array}\)
  22. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    y&=&\dfrac{x}{x+2} \\ \\
    x&=&\dfrac{y}{y+2} \\ \\
    x(y+2)&=&y \\
    xy+2x&=&y \\
    2x&=&y-xy \\
    2x&=&y(1-x) \\ \\
    y&=&\dfrac{2x}{1-x}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.