"

Answer Key 11.2

[latexpage]

  1. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    g(3)&=&(3)^3+5(3)^2 \\
    &=&27+45 \\
    &=&72
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    f(3)&=&2(3)+4 \\
    &=&6+4 \\
    &=&10 \\
    \end{array}
    \end{array}\)

    \(g(3)+f(3)=72+10=82\)

  2. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    \\
    f(-4)&=&-3(-4)^2+3(-4) \\
    &=&-3(16)-12 \\
    &=&-48-12 \\
    &=&-60
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    g(-4)&=&2(-4)+5 \\
    &=&-8+5 \\
    &=&-3
    \end{array}
    \end{array}\)

    \(\dfrac{f(-4)}{g(-4)}=\dfrac{-60}{-3}=20\)

  3. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    g(5)&=&-4(5)+1 \\
    &=&-20+1 \\
    &=&-19
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    h(5)&=&-2(5)-1 \\
    &=&-10-1 \\
    &=& -11
    \end{array}
    \end{array}\)

    \(g(5)+h(5)=-19-11=-30\)

  4. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    g(2)&=&3(2)+1 \\
    &=&6+1 \\
    &=&7
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    \\
    f(2)&=&(2)^3+3(2)^2 \\
    &=&8+3\cdot 4 \\
    &=&8+12 \\
    &=&20
    \end{array}
    \end{array}\)

    \(g(2)\cdot f(2)=7\cdot 20=140\)

  5. \(\begin{array}{ll}
    \\
    \begin{array}{rrl}
    g(1)&=&1-3 \\
    &=&-2
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    \\
    h(1)&=&-3(1)^3+6(1) \\
    &=&-3+6 \\
    &=&3
    \end{array}
    \end{array}\)

    \(g(1)+h(1)=-2+3=1\)

  6. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    g(-6)&=&(-6)^2-2 \\
    &=&36-2 \\
    &=&34
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    h(-6)&=&2(-6)+5 \\
    &=&-12+5 \\
    &=&-7
    \end{array}
    \end{array}\)

    \(g(-6)+h(-6)=34-7=27\)

  7. \(\begin{array}{ll}
    \\
    \begin{array}{rrl}
    h(0)&=&\cancel{2(0)}-1 \\
    &=&-1
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    g(0)&=&\cancel{3(0)}-5 \\
    &=&-5
    \end{array}
    \end{array}\)

    \(\dfrac{h(0)}{g(0)}=\dfrac{-1}{-5}=\dfrac{1}{5}\)

  8. \((g+h)=
    \begin{array}{rrrr}
    \\ \\
    &3a&-&2 \\
    +&4a&-&2 \\
    \midrule
    &7a&-&4
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (g+h)(10)&=&7(10)-4 \\
    &=&70-4 \\
    &=&66
    \end{array}\)
  9. \((g+f)=
    \begin{array}{rrrr}
    \\ \\
    &3a&+&3 \\
    +&2a&-&2 \\
    \midrule
    &5a&+&1
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (g+f)(9)&=&5(9)+1 \\
    &=&45+1 \\
    &=&46
    \end{array}\)
  10. \((g-h)=
    \begin{array}{r}
    \\ \\
    4x+3 \\
    - \hspace{0.42in} (x^3-2x^2) \\
    \midrule
    -x^3+2x^2+4x+3
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (g-h)(-1)&=&-(-1)^3+2(-1)^2+4(-1)+3 \\
    &=&1+2-4+3 \\
    &=&2
    \end{array}\)
  11. \((g-f)=
    \begin{array}{rrrr}
    \\ \\
    &x&+&3 \\
    -&(-x&+&4) \\
    \midrule
    &2x&-&1
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (g-f)(3)&=&2(3)-1 \\
    &=&6-1 \\
    &=&5
    \end{array}\)
  12. \((g-f)=
    \begin{array}{rrrrrr}
    \\ \\
    &x^2&&&+&2 \\
    -&&&(2x&+&5) \\
    \midrule
    &x^2&-&2x&-&3
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (g-f)(0)&=&\cancel{(0)^2}-\cancel{2(0)}-3 \\
    &=&-3
    \end{array}\)
  13. \((f+g)=
    \begin{array}{rrrr}
    \\ \\
    &n&-&5 \\
    +&4n&+&2 \\
    \midrule
    &5n&-&3
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (f+g)(-8)&=&5(-8)-3 \\
    &=&-40-3 \\
    &=&-43
    \end{array}\)
  14. \((h\cdot g)=
    \begin{array}{rrrrrr}
    \\ \\ \\ \\ \\
    &&&t&+&5 \\
    \times &&&3t&-&5 \\
    \midrule
    &3t^2&+&15t&& \\
    &&-&5t&-&25 \\
    \midrule
    &3t^2&+&10t&-&25
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (h\cdot g)(5)&=&3(5)^2+10(5)-25 \\
    &=&75+50-25 \\
    &=&100
    \end{array}\)
  15. \((g\cdot h)=
    \begin{array}{rrrr}
    \\ \\
    &t&-&4 \\
    \times &&&2t \\
    \midrule
    &2t^2&-&8t
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (g\cdot h)(3t)&=&2(3t)^2-8(3t) \\
    &=&2(9t^2)-24t \\
    &=&18t^2-24t
    \end{array}\)
  16. \(\dfrac{g(n)}{f(n)}=\dfrac{n^2+5}{2n+5}\hspace{0.25in} \text{Does not reduce}\)
  17. \(\dfrac{g}{f}=\dfrac{-2a+5}{3a+5}\hspace{0.3in}\left(\dfrac{g}{f}\right)(a^2)=\dfrac{-2a^2+5}{3a^2+5}\hspace{0.25in} \text{Does not reduce}\)
  18. \(h(n)+g(n)=
    \begin{array}{rrrrrr}
    \\ \\
    &n^3&+&4n&& \\
    +&&&4n&+&5 \\
    \midrule
    &n^3&+&8n&+&5
    \end{array}\)
  19. \(\begin{array}{rrl}
    \\
    g(n^2)&=&(n^2)^2-4(n^2) \\
    &=&n^4-4n^2
    \end{array}\hspace{0.25in}
    h(n^2)=n^2-5\)

    \(g(n^2)\cdot h(n^2)=
    \begin{array}{rrrrrr}
    \\ \\ \\
    &&&n^4&-&4n^2 \\
    \times&&&n^2&-&5 \\
    \midrule
    &n^6&-&4n^4&& \\
    &&-&5n^4&+&20n^2 \\
    \midrule
    &n^6&-&9n^4&+&20n^2 \\
    \end{array}\)

  20. \((g\cdot h)=
    \begin{array}{rrrrrr}
    \\ \\ \\
    &&&n&+&5 \\
    \times &&&2n&-&5 \\
    \midrule
    &2n^2&+&10n&& \\
    &&-&5n&-&25 \\
    \midrule
    &2n^2&+&5n&-&25
    \end{array}\hspace{0.25in}
    \begin{array}{rrl}
    (g\cdot h)(-3n)&=&2(-3n)^2+5(-3n)-25 \\
    &=&2(9n^2)-15n-25 \\
    &=&18n^2-15n-25
    \end{array}\)
  21. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    (f\circ g)&=&-4(4x+3)+1 \\
    &=&-16x-12+1 \\
    &=&-16x-11
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    (f\circ g)(9)&=&-16(9)-11 \\
    &=&-144-11 \\
    &=&-155
    \end{array}
    \end{array}\)
  22. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    (h\circ g)&=&3(a+1)+3 \\
    &=&3a+3+3 \\
    &=&3a+6
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    (h\circ g)(5)&=&3(5)+6 \\
    &=&15+6 \\
    &=&21
    \end{array}
    \end{array}\)
  23. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    (g\circ h)&=&(x^2-1)+4 \\
    &=&x^2-1+4 \\
    &=&x^2+3
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    (g\circ h)(10)&=&(10)^2+3 \\
    &=&100+3 \\
    &=&103
    \end{array}
    \end{array}\)
  24. \(\begin{array}{ll}
    \\ \\
    \begin{array}{rrl}
    (f\circ g)&=&-4(n+4)+2 \\
    &=&-4n-16+2 \\
    &=&-4n-14
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    (f\circ g)(9)&=&-4(9)-14 \\
    &=&-36-14 \\
    &=&-50
    \end{array}
    \end{array}\)
  25. \(\begin{array}{ll}
    \begin{array}{rrl}
    \\
    (g\circ h)&=&2(2x^3+4x^2)-4 \\
    &=&4x^3+8x^2-4
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrl}
    \\ \\
    (g\circ h)(3)&=&4(3)^3+8(3)^2-4 \\
    &=&108+72-4 \\
    &=&176
    \end{array}
    \end{array}\)
  26. \(\begin{array}{rrl}
    \\ \\
    (g\circ h)&=&(4x+4)^2-5(4x+4) \\
    &=&16x^2+32x+16-20x-20 \\
    &=&16x^2+12x-4
    \end{array}\)
  27. \(\begin{array}{rrl}
    \\
    (f\circ g)&=&-2(4a)+2 \\
    &=&-8a+2
    \end{array}\)
  28. \(\begin{array}{rrl}
    \\ \\
    (g\circ f)&=&4(x^3-1)+4 \\
    &=&4x^3-4+4 \\
    & =&4x^3
    \end{array}\)
  29. \(\begin{array}{rrl}
    \\ \\
    (g\circ f)&=&-(2x-3)+5 \\
    &=&-2x+6+5 \\
    &=&-2x+11
    \end{array}\)
  30. \(\begin{array}{rrl}
    \\ \\
    (f\circ g)&=&4(-4t-2)+3 \\
    &=&-16t-8+3 \\
    &=&-16t-5
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.