Answer Key 10.7
[latexpage]
- \(\begin{array}{rrrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
x&+&y&=&22&\Rightarrow &x&=&22&-&y \\
x&-&y&=&120&&&&&& \\ \\
(22&-&y)y&=&120&&&&&& \\
22y&-&y^2&=&120&&&&&& \\ \\
&&0&=&y^2&-&22y&+&120&& \\
&&0&=&y^2&-&12y&-&10y&+&120 \\
\midrule
&&0&=&y(y&-&12)&-&10(y&-&12) \\
&&0&=&(y&-&12)(y&-&10)&& \\ \\
&&y&=&12,&10&&&&&
\end{array}\)\(\therefore \text{ numbers are }10, 12\)
- \(\begin{array}{rrrrccrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&x&-&y&=&4&\Rightarrow &x&=&y&+&4 \\
&&&&x&\cdot &y&=&140&&&&&& \\ \\
&&&&(y&+&4)y&=&140&&&&&& \\
&&&&y^2&+&4y&=&140&&&&&& \\ \\
&&y^2&+&4y&-&140&=&0&&&&&& \\
y^2&-&10y&+&14y&-&140&=&0&&&&&& \\
\midrule
y(y&-&10)&+&14(y&-&10)&=&0&&&&&& \\
&&(y&-&10)(y&+&14)&=&0&&&&&& \\ \\
&&&&&&y&=&10,&-14&&&&& \\ \\
&&&&&&y&=&10,&x&=&10&+&4&= 14 \\
&&&&&&y&=&-14,&x&=&-14&+&4&= -10 \\
\end{array}\)\(\therefore \text{ numbers are }10, 14\text{ and }-10, -14\)
- \(\begin{array}{rrrrcrrrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&A&-&B&=&8&\Rightarrow &A&=&B&+&8 \\
&&&&A^2&+&B^2&=&320&&&&&& \\ \\
&&(B&+&8)^2&+&B^2&=&320&&&&&& \\
B^2&+&16B&+&64&+&B^2&=&320&&&&&& \\
&&&-&320&&&&-320&&&&&& \\
\midrule
&&2B^2&+&16B&-&256&=&0&&&&&& \\
&&2(B^2&+&8B&-&128)&=&0&&&&&& \\
&&2(B&+&16)(B&-&8)&=&0&&&&&& \\ \\
&&&&&&B&=&-16,&8&&&&& \\ \\
&&&&&&\therefore A&=&B&+&8&&&& \\
&&&&&&A&=&-8,&16&&&&&
\end{array}\)\(\therefore (-16, -8)\text{ and }(8,16)\)
- \(\begin{array}{rrrrcrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
x, &x&+&2&&&&&&&&&& \\ \\
&&x^2&+&(x&+&2)^2&=&244&&&&& \\
x^2&+&x^2&+&4x&+&4&=&244&&&&& \\
&&&&&&-244&&-244&&&&& \\
\midrule
&&2x^2&+&4x&-&240&=&0&&&&& \\
&&2(x^2&+&2x&-&120)&=&0&&&&& \\
&&2(x&-&10)(x&+&12)&=&0&&&&& \\ \\
&&&&&&x&=&10, &-12&&&& \\ \\
&&&&&&x&=&10, &x&+&2&=&12 \\
&&&&&&x&=&-12, &x&+&2&=&-10
\end{array}\)\(\therefore \text{ numbers are }10, 12\text{ or }-12, -10\)
- \(\begin{array}{rrrrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
x,&x&+&2&&&&&&&& \\ \\
&&x^2&-&(x&+&2)^2&=&60&&& \\
x^2&-&(x^2&+&4x&+&4)&=&60&&& \\
x^2&-&x^2&-&4x&-&4&=&60&&& \\
&&&&&+&4&&+4&&& \\
\midrule
&&&&&&\dfrac{-4x}{-4}&=&\dfrac{64}{-4}&&& \\ \\
&&&&&&x&=&-16&&& \\ \\
&&&&x&+&2&\Rightarrow &-16&+&2& \\
&&&&&&&\Rightarrow &-14&&& \\
\end{array}\)\(-16, -14\)
- \(\begin{array}{rrrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
x,&x&+&2&&&&& \\ \\
&&x^2&+&(x&+&2)^2&=&\phantom{-}452 \\
x^2&+&x^2&+&4x&+&4&=&\phantom{-}452 \\
&&&&&-&452&&-452 \\
\midrule
&&2x^2&+&4x&-&448&=&0 \\
&&2(x^2&+&2x&-&224)&=&0 \\
&&2(x&-&14)(x&+&16)&=&0 \\ \\
&&&&&&x&=&14, -16 \\ \\
&&&&&&x&=&14 \\
&&&&x&+&2&=&16 \\ \\
&&&&&&x&=&-16 \\
&&&&x&+&2&=&-14
\end{array}\)\(14,16\text{ and }-16,-14\)
- \(\begin{array}{rrcrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\
x,&x&+&2,&x&+&4&&&& \\ \\
&&x(x&+&2)&=&38&+&x&+&4 \\
x^2&+&2x&&&=&42&+&x&& \\
&-&x&-&42&&-42&-&x&& \\
\midrule
x^2&+&x&-&42&=&0&&&& \\
(x&+&7)(x&-&6)&=&0&&&& \\
&&&&x&=&\cancel{-7},&6&&& \\
\end{array}\)\(\therefore \text{ numbers are }6,8,10\)
- \(x, x+2, x+4\)\(\begin{array}{rrrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
&&(x)(x&+&2)&=&52&+&x&+&4 \\ \\
x^2&+&2x&&&=&56&+&x&& \\
&-&x&-&56&&-56&-&x&& \\
\midrule
x^2&+&x&-&56&=&0&&&& \\
(x&+&8)(x&-&7)&=&0&&&& \\ \\
&&&&x&=&\cancel{-8}, 7&&&&
\end{array}\)\(\therefore \text{ numbers are }7,9,11\)
- \(\begin{array}{rrrrrrrrlrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&A&=&T&+&4&&&&& \\ \\
A&\cdot &T&=&80&+&(A&-&4)&(T&-&4) \\
(T&+&4)T&=&80&+&(T&+&\cancel{4-4})&(T&-&4) \\ \\
T^2&+&4T&=&80&+&T^2&-&4T&&& \\
-T^2&+&4T&&&-&T^2&+&4T&&& \\
\midrule
&&\dfrac{8T}{8}&=&\dfrac{80}{8}&&&&&&& \\ \\
&&T&=&10&&&&&&& \\ \\
&&\therefore A&=&T&+&4&&&&& \\
&&A&=&10&+&4&=&14&&&
\end{array}\) - \(\begin{array}{rrcrrrcrcrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&C&=&K&+&3&&&&&& \\
&&CK&=&(C&+&5)&&(K&+&5)&-&130 \\ \\
(K&+&3)K&=&(K&+&3&+&5)(K&+&5)&-&130 \\
K^2&+&3K&=&K^2&+&13K&+&40&-&130&& \\
-K^2&-&13K&&-K^2&-&13K&&&&&& \\
\midrule
&&\dfrac{-10K}{-10}&=&\dfrac{-90}{-10}&&&&&&&& \\ \\
&&K&=&9&&&&&&&& \\ \\
&&\therefore C&=&9&+&3&=&12&&&&
\end{array}\) - \(\begin{array}{rrrrcrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&&&J&=&S&+&1&& \\ \\
&&(J&+&5)(S&+&5)&=&230&+&J&\cdot &S \\
(S&+&1&+&5)(S&+&5)&=&230&+&(S&+&1)S \\
&&(S&+&6)(S&+&5)&=&230&+&S^2&+&S \\ \\
&&S^2&+&11S&+&30&=&S^2&+&S&+&230 \\
&&-S^2&-&S&-&30&&-S^2&-&S&-&30 \\
\midrule
&&&&&&\dfrac{10S}{10}&=&\dfrac{200}{10}&&&& \\ \\
&&&&&&S&=&20&&&& \\
&&&&&&J&=&21&&&&
\end{array}\) - \(\begin{array}{rrcrcrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&&&J&=&S&+&2&& \\
&&(S&+&2)(J&+&2)&=&48&+&S&\cdot &J \\ \\
(S&+&2)(S&+&2&+&2)&=&48&+&S(S&+&2) \\
&&(S&+&2)(S&+&4)&=&48&+&S^2&+&25 \\ \\
&&S^2&+&6S&+&8&=&48&+&S^2&+&25 \\
&&-S^2&-&2S&-&8&&-8&-&S^2&-&25 \\
\midrule
&&&&&&\dfrac{4S}{4}&=&\dfrac{40}{4}&&&& \\ \\
&&&&&&S&=&10&&&& \\
&&&&&&J&=&12&&&&
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\
&&&&&&d&=&r\cdot t \\ \\
&&&&r&\cdot &t&=&240\ \\
&&&&&&\therefore r&=&\dfrac{240}{t} \\ \\
&&(r&+&20)(t&-&1)&=&240 \\
&&(\dfrac{240}{t}&+&20)(t&-&1)&=&240 \\ \\
\cancel{240}&+&20t&-&\dfrac{240}{t}&-&20&=&\cancel{240} \\ \\
&&(20t&-&\dfrac{240}{t}&-&20&=&0)(t) \\ \\
&&(20t^2&-&240&-&20t&=&0)(\div 20)
\end{array}
&\hspace{0.25in}
\begin{array}{rrcrcrl}
t^2&-&12&-&t&=&0 \\
(t&-&4)(t&+&3)&=&0 \\ \\
&&&&t&=&4, \cancel{-3} \\ \\
&&&&r&=&\dfrac{240}{4}\text{ or }60\text{ km/h} \\ \\
&&&&\text{faster}&=&80\text{ km/h}
\end{array}
\end{array}\) - \(\begin{array}{ll}
\begin{array}{rrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\
&&&&&&d&=&r\cdot t \\
&&&&r&\cdot &t&=&100 \\
&&&&&&r&=&\dfrac{100}{t} \\ \\
&&(r&+&20)(t&-&0.5)&=&120 \\
&&(\dfrac{100}{t}&+&20)(t&-&0.5)&=&120 \\
100&+&20t&-&\dfrac{50}{t}&-&10&=&120 \\
&&&&&-&120&&-120 \\
\midrule
&&20t&-&30&-&\dfrac{50}{t}&=&0 \\ \\
&&(20t&-&30&-&\dfrac{50}{t}&=&0)(t) \\ \\
&&(20t^2&-&30t&-&50&=&0)(\div 10)
\end{array}
&\hspace{0.25in}
\begin{array}{rrrrrrl}
2t^2&-&3t&-&5&=&0 \\
&&&&t&=&\dfrac{-(-3)\pm \sqrt{(-3)^2-4(2)(-5)}}{2(2)} \\ \\
&&&&t&=&\dfrac{3\pm 7}{4}=\dfrac{10}{4}\text{ or }\cancel{\dfrac{-4}{4}} \\ \\
&&&&t&=&2.5\text{ h}
\end{array}
\end{array}\)\(\text{Answer: }\dfrac{100\text{ km}}{2.5\text{ h}}=\dfrac{40\text{ km}}{\text{h}}, \dfrac{120\text{ km}}{2\text{ h}}=\dfrac{60\text{ km}}{\text{h}}\)
- \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
&&&&&&d&=&r\cdot t \\
&&&&r&\cdot &t&=&150 \\
&&&&&&r&=&\dfrac{150}{t} \\ \\
&&(r&+&5)(t&-&1.5)&=&150 \\
&&(\dfrac{150}{t}&+&5)(t&-&1.5)&=&150 \\ \\
\cancel{150}&+&5t&-&\dfrac{225}{t}&-&7.5&=&\cancel{150} \\ \\
&&(5t&-&\dfrac{225}{t}&-&7.5&=&0)(t) \\ \\
&&(5t^2&-&7.5t&-&225&=&0)(2) \\
&&(10t^2&-&15t&-&450&=&0)(\div 5)
\end{array}
&\hspace{0.25in}
\begin{array}{rrrrrrl}
\\ \\ \\ \\ \\ \\
2t^2&-&3t&-&90&=&0 \\
(t&+&6)(2t&-&15)&=&0 \\
&&&&t&=&\cancel{-6}, \dfrac{15}{2} \\ \\
&&&&r&=&\dfrac{150}{t} \\ \\
&&&&r&=&\dfrac{150}{\dfrac{15}{2}} \\ \\
&&&&r&=&\dfrac{150}{1}\cdot \dfrac{2}{15} \\ \\
&&&&r&=&20\text{ km/h}
\end{array}
\end{array}\) - \(\begin{array}{rrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&&&d&=&r\cdot t \\
&&&&r&\cdot &t&=&180\Rightarrow r=\dfrac{180}{t} \\ \\
&&(r&+&15)(t&-&1)&=&180 \\
&&(\dfrac{180}{t}&+&15)(t&-&1)&=&180 \\ \\
\cancel{180}&+&15t&-&\dfrac{180}{t}&-&15&=&\cancel{180} \\
&&(15t&-&15&-&\dfrac{180}{t}&=&0)(t) \\
&&(15t^2&-&15t&-&180&=&0)(\div 15) \\ \\
&&t^2&-&t&-&12&=&0 \\
&&(t&-&4)(t&+&3)&=&0 \\
&&&&&&t&=&4, \cancel{-3} \\ \\
&&&&&&r&=&\dfrac{180}{4}=45
\end{array}\) - \(\begin{array}{rrrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&r&\cdot &t&=&72\Rightarrow r=\dfrac{72}{t} \\ \\
&&(r&+&12)(9&-&t)&=&72 \\ \\
&&(\dfrac{72}{t}&+&12)(9&-&t)&=&72 \\
\dfrac{648}{t}&+&108&-&72&-&12t&=&72 \\
&&&-&72&&&&-72 \\
\midrule
&&(-12t&-&36&+&\dfrac{648}{t}&=&0)(t) \\ \\
&&(-12t^2&-&36t&+&648&=&0)(\div -12) \\ \\
&&t^2&+&3t&-&54&=&0 \\
&&(t&+&9)(t&-&6)&=&0 \\
&&&&&&t&=&\cancel{-9}, 6 \\ \\
&&&&&&r&=&\dfrac{72}{6}=12\text{ (there)} \\ \\
&&&&&&r&=&24\text{ (return)}
\end{array}\) - \(\begin{array}{rrrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&r&\cdot &t&=&120\Rightarrow r=\dfrac{120}{t} \\
&&(r&+&10)(7&-&t)&=&120 \\ \\
&&(\dfrac{120}{t}&+&10)(7&-&t)&=&120 \\
\dfrac{840}{t}&+&70&-&120&-&10t&=&120 \\
&&&-&120&&&&-120 \\
\midrule
&&(-10t&-&170&+&\dfrac{840}{t}&=&0)(t) \\
&&(-10t^2&-&170t&+&840&=&0)(\div -10) \\ \\
&&t^2&+&17t&-&84&=&0 \\
&&(t&+&21)(t&-&4)&=&0 \\
&&&&&&t&=&\cancel{-21}, 4 \\ \\
&&&&&&r&=&\dfrac{120}{4}\text{ or }30\text{ km/h} \\ \\
&&&&r&+&10&=&40\text{ km/h} \\
\end{array}\) - \(\begin{array}{rrrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&r&\cdot &t&=&240\Rightarrow r=\dfrac{240}{t} \\ \\
&&(r&+&20)(t&-&1)&=&240 \\
&&(\dfrac{240}{t}&+&20)(t&-&1)&=&240 \\
\cancel{240}&+&20t&-&\dfrac{240}{t}&-&20&=&\cancel{240} \\ \\
&&(20t&-&20&-&\dfrac{240}{t}&=&0)(t) \\
&&(20t^2&-&20t&-&240&=&0)(\div 20) \\ \\
&&t^2&-&t&-&12&=&0 \\
&&(t&-&4)(t&+&3)&=&0 \\
&&&&&&t&=&4, \cancel{-3} \\ \\
&&&&&&r&=&\dfrac{240}{4}\text{ or }60\text{ km/h}
\end{array}\) - \(\begin{array}{rrrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&r&\cdot &t&=&600\Rightarrow r=\dfrac{600}{t} \\ \\
&&(r&-&50)(7&-&t)&=&600 \\
&&(\dfrac{600}{t}&-&50)(7&-&t)&=&600 \\
\dfrac{4200}{t}&-&350&-&600&+&50t&=&600 \\
&&&-&600&&&&-600 \\
\midrule
&&(50t&-&1550&+&\dfrac{4200}{t}&=&0)(t) \\
&&(50t^2&-&1550t&+&4200&=&0)(\div 50) \\ \\
&&t^2&-&31t&+&84&=&0 \\
&&(t&-&3)(t&-&28)&=&0 \\
&&&&&&t&=&3, \cancel{28} \\ \\
&&&&&&r&=&\dfrac{600}{3}\text{ or }200\text{ km/h}
\end{array}\) - \(\begin{array}{rrrrlrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
L&=&4&+&W&&&& \\
\text{Area}&=&L&\cdot &W&&&& \\ \\
60&=&(4&+&W)W&&&& \\
60&=&4W&+&W^2&&&& \\ \\
0&=&W^2&+&4W&-&60&& \\
0&=&W^2&+&10W&-&6W&-&60 \\
\midrule
0&=&W(W&+&10)&-&6(W&+&10) \\
0&=&(W&+&10)(W&-&6)&& \\ \\
W&=&\cancel{-10},&6&&&&& \\
L&=&6&+&4&=&10&&
\end{array}\) - \(\begin{array}{rrrrcrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
W&=&L&-&10&&&& \\
\text{Area}&=&L&\cdot &W&&&& \\ \\
200&=&L(L&-&10)&&&& \\
200&=&L^2&-&10L&&&& \\ \\
0&=&L^2&-&10L&-&200&& \\
0&=&L^2&+&10L&-&20L&-&200 \\
\midrule
0&=&L(L&+&10)&-&20(L&+&10) \\
0&=&(L&+&10)(L&-&20)&& \\ \\
L&=&\cancel{-10},&20&&&&& \\
W&=&20&-&10&=&10&&
\end{array}\) - \(\begin{array}{rrrrcrcrcrl}
\\ \\ \\ \\ \\ \\ \\ \\
&&&&&&\text{Area}_{\text{large}}&-&\text{Area}_{\text{small}}&=&2800\text{ m}^2 \\ \\
&&(150&+&2x)(120&+&2x)&-&(150)(120)&=&2800 \\
\cancel{18000}&+&240x&+&300x&+&4x^2&-&\cancel{18000}&=&2800 \\
&&&&&&&-&2800&&-2800 \\
\midrule
&&&&4x^2&+&540x&-&2800&=&0 \\
&&&&x^2&+&135x&-&700&=&0 \\
&&&&(x&-&5)(x&+&140)&=&0 \\
&&&&&&&&x&=&5, \cancel{-140}
\end{array}\)\(\text{walkway}=5\text{ m}\)
- \(\begin{array}{rrrrcrcrcrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&&&\text{Area}_{\text{large}}&-&\text{Area}_{\text{small}}&=&74\text{ m}^2 \\ \\
&&(25&+&2x)(10&+&2x)&-&(25)(10)&=&74 \\
\cancel{250}&+&20x&+&50x&+&4x^2&-&\cancel{250}&=&74 \\
&&&&&&&-&74&&-74 \\
\midrule
&&&&4x^2&+&70x&-&74&=&0 \\
&&&&2x^2&+&35x&-&37&=&0 \\
&&&&(x&-&1)(2x&+&37)&=&0 \\
&&&&&&&&x&=&1, \cancel{-\dfrac{37}{2}} \\
\end{array}\)\(\text{the overlap}=1\text{ m}\)
- \(\begin{array}{rrrrrrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&L&=&W&+&4 \\
&&L&\cdot &W&=&60&& \\ \\
&&(W&+&4)W&=&60&& \\
W^2&+&4W&&&=&60&& \\
&&&-&60&&-60&& \\
\midrule
W^2&+&4W&-&60&=&0&& \\
(W&-&6)(W&+&10)&=&0&& \\ \\
&&&&W&=&6,&\cancel{-10}& \\
&&&&L&=&6&+&4=10
\end{array}\) - \(\begin{array}{rrrrrrrrcrr}
\\ \\ \\ \\ \\ \\ \\
&&(x&+&5)^2&=&4(x)^2&&&& \\ \\
x^2&+&10x&+&25&=&4x^2&&&& \\
-x^2&-&10x&-&25&&-x^2&-&10x&-&25 \\
\midrule
&&&&0&=&3x^2&-&10x&-&25 \\
&&&&0&=&(x&-&5)(3x&+&5) \\
&&&&x&=&5, &\cancel{-\dfrac{5}{3}}&&&
\end{array}\) - \(\begin{array}{rrrrrrlll}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&L&=&20&+&W \\
&&L&\cdot &W&=&2400&& \\ \\
&&(20&+&W)W&=&2400&& \\
W^2&+&20W&&&=&2400&& \\
&&&-&2400&&-2400&& \\
\midrule
W^2&+&20W&-&2400&=&0&& \\
(W&+&60)(W&-&40)&=&0&& \\ \\
&&&&W&=&\cancel{-60},&40& \\
&&&&L&=&20&+&40=60
\end{array}\) - \(\begin{array}{rrrrcrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
&&&&&&L&=&W&+&8&& \\
&&(L&+&2)(W&+&2)&=&L&\cdot &W&+&60 \\ \\
(W&+&8&+&2)(W&+&2)&=&(W&+&8)W&+&60 \\
&&W^2&+&12W&+&20&=&W^2&+&8W&+&60 \\
&&-W^2&-&8W&-&20&&-W^2&-&8W&-&20 \\
\midrule
&&&&&&\dfrac{4W}{4}&=&\dfrac{40}{4}&&&& \\ \\
&&&&&&W&=&10&&&& \\
&&&&&&L&=&10&+&8&=&18
\end{array}\)