"

Answer Key 10.3

[latexpage]

  1. \(\begin{array}{rrl}
    \\ \\ \\
    \dfrac{30}{2}&=&15 \\ \\
    15^2&=&225 \\
    \therefore x^2&-&30x+225\text{ or }(x-15)^2
    \end{array}\)
  2. \(\begin{array}{rrl}
    \\ \\ \\
    \dfrac{24}{2}&=&12 \\ \\
    12^2&=&144 \\
    \therefore a^2&-&24a+144\text{ or }(a-12)^2
    \end{array}\)
  3. \(\begin{array}{rrl}
    \\ \\ \\
    \dfrac{36}{2}&=&18 \\ \\
    18^2&=&324 \\
    \therefore m^2&-&36m+324\text{ or }(m-18)^2
    \end{array}\)
  4. \(\begin{array}{rrl}
    \\ \\ \\
    \dfrac{34}{2}&=&17 \\ \\
    17^2&=&289 \\
    \therefore x^2&-&34x+289\text{ or }(x-17)^2
    \end{array}\)
  5. \(\begin{array}{rrl}
    \\ \\ \\ \\
    \dfrac{15}{2}&=&7.5 \\ \\
    7.5^2&=&56.25 \\
    \therefore x^2&-&15x+56.25\text{ or }\left(x-\dfrac{15}{2}\right)^2
    \end{array}\)
  6. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    \dfrac{19}{2}&=&\dfrac{19}{2} \\ \\
    \left(\dfrac{19}{2}\right)^2&=&\dfrac{361}{4} \\
    \therefore r^2&-&19r+\dfrac{361}{4}\text{ or } \left(r-\dfrac{19}{2}\right)^2
    \end{array}\)
  7. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    \dfrac{1}{2}&& \\ \\
    \left(\dfrac{1}{2}\right)^2&=&\dfrac{1}{4} \\
    \therefore y^2&-&y+\dfrac{1}{4}\text{ or } \left(y-\dfrac{1}{2}\right)^2
    \end{array}\)
  8. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\
    \dfrac{17}{2}&& \\ \\
    \left(\dfrac{17}{2}\right)^2&=&\dfrac{289}{4} \\
    \therefore p^2&-&17p+\dfrac{289}{4}\text{ or }\left(p-\dfrac{17}{2}\right)^2
    \end{array}\)
  9. \(\begin{array}{rrrrrlrrr}
    \\ \\ \\ \\ \\ \\
    x^2&-&16x&+&55&=&0&& \\
    &&&-&55&&-55&& \\
    \midrule
    &&x^2&-&16x&=&-55&& \\ \\
    x^2&-&16x&+&64&=&64&-&55 \\
    &&(x&-&8)^2&=&9&&
    \end{array}\)

    \(\sqrt{(x-8)^2}=\sqrt{9}\)

    \(\begin{array}{rrrrrrr}
    x&-&8&=&\pm &3& \\
    &+&8&&+ &8& \\
    \midrule
    &&x&=&8&\pm &3 \\
    &&x&=&5,&11 &
    \end{array}\)

  10. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\
    n^2&-&4n&-&12&=&0&& \\
    &&&+&12&&+12&& \\
    \midrule
    &&n^2&-&4n&=&12&& \\ \\
    n^2&-&4n&+&4&=&12&+&4 \\
    &&(n&-&2)^2&=&16&&
    \end{array}\)

    \(\sqrt{(n-2)^2}=\pm \sqrt{16}\)

    \(\begin{array}{rrrrrrr}
    n&-&2&=&\pm &4& \\
    &+&2&&+&2& \\
    \midrule
    &&n&=&2&\pm &4 \\
    &&n&=&6,&-2&
    \end{array}\)

  11. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\
    v^2&-&4v&-&21&=&0&& \\
    &&&+&21&&+21&& \\
    \midrule
    &&v^2&-&4v&=&21&& \\ \\
    v^2&-&4v&+&4&=&21&+&4 \\
    &&(v&-&2)^2&=&25&&
    \end{array}\)

    \(\sqrt{(v-2)^2}=\sqrt{25}\)

    \(\begin{array}{rrrrrrr}
    v&-&2&=&\pm &5& \\
    &+&2&&+&2& \\
    \midrule
    &&v&=&2&\pm &5 \\
    &&v&=&7,&-3&
    \end{array}\)

  12. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\
    b^2&+&8b&+&7&=&0&& \\
    &&&-&7&&-7&& \\
    \midrule
    &&b^2&+&8b&=&-7&& \\ \\
    b^2&+&8b&+&16&=&-7&+&16 \\
    &&(b&+&4)^2&=&9&&
    \end{array}\)

    \(\sqrt{(b+4)^2}=\sqrt{9}\)

    \(\begin{array}{rrrrrrr}
    b&+&4&=&\pm&3& \\
    &-&4&&-&4& \\
    \midrule
    &&b&=&-4&\pm &3 \\
    &&b&=&-7,&-1&
    \end{array}\)

  13. \(\begin{array}{rrrrrrrrr}
    \\
    x^2&-&8x&+&16&=&-6&+&16 \\
    &&(x&-&4)^2&=&10&&
    \end{array}\)

    \(\sqrt{(x-4)^2}=\sqrt{10}\)

    \(\begin{array}{rrrrrrr}
    x&-&4&=&\pm&\sqrt{10}& \\
    &+&4&&+&4& \\
    \midrule
    &&x&=&4&\pm&\sqrt{10}
    \end{array}\)

  14. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\
    x^2&&&-&13&=&4x&& \\
    &-&4x&+&13&&-4x&+&13 \\
    \midrule
    x^2&-&4x&+&4&=&13&+&4 \\
    &&(x&-&2)^2&=&17&&
    \end{array}\)

    \(\sqrt{(x-2)^2}=\sqrt{17}\)

    \(\begin{array}{rrrrrrr}
    x&-&2&=&\pm&\sqrt{17}& \\
    &+&2&&+&2& \\
    \midrule
    &&x&=&2&\pm&\sqrt{17}
    \end{array}\)

  15. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    &&\dfrac{3}{3}(k^2&+&8k)&=&\dfrac{-1}{3}&& \\ \\
    &&k^2&+&8k&=&-\dfrac{1}{3}&& \\ \\
    k^2&+&8k&+&16&=&-\dfrac{1}{3}&+&16 \\ \\
    &&(k&+&4)^2&=&15\dfrac{2}{3}&&
    \end{array}\)

    \(\sqrt{(k+4)^2}=\sqrt{15\dfrac{2}{3}}\)

    \(\begin{array}{rrrrrrr}
    k&+&4&=&\pm &\sqrt{\dfrac{47}{3}}& \\
    &-&4&&-&4& \\
    \midrule
    &&k&=&-4&\pm &\sqrt{\dfrac{47}{3}}
    \end{array}\)

  16. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\
    &&\dfrac{4}{4}(a^2&+&9a)&=&\dfrac{-2}{4}&& \\ \\
    a^2&+&9a&+&20.25&=&-\dfrac{1}{2}&+&20.25 \\ \\
    &&(a&+&4.5)^2&=&19.75&&
    \end{array}\)

    \(\sqrt{(a+4.5)^2}=\pm \sqrt{19.75}\)

    \(\begin{array}{rrrrrcl}
    a&+&4.5&=&\pm&\sqrt{19.75}& \\
    &-&4.5&&-&4.5& \\
    \midrule
    &&a&=&-4.5&\pm&\sqrt{19.75}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.