"

Answer Key 10.2

[latexpage]

  1. \(\begin{array}{rrl}
    \\ \\
    \sqrt{x^2}&=&\sqrt{75} \\
    x&=&\pm \sqrt{25\cdot 3} \\
    x&=&\pm 5\sqrt{3}
    \end{array}\)
  2. \(\begin{array}{rrl}
    \\
    \sqrt[3]{x^3}&=&\sqrt[3]{-8} \\
    x&=&-2
    \end{array}\)
  3. \(\begin{array}{rrrrl}
    \\ \\ \\ \\
    x^2&+&5&=&13 \\
    &-&5&&-5 \\
    \midrule
    &&\sqrt{x^2}&=&\sqrt{8} \\
    &&x&=&\pm \sqrt{4\cdot 2} \\
    &&x&=&\pm 2\sqrt{2}
    \end{array}\)
  4. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\
    4x^3&-&2&=&106 \\
    &+&2&&+2 \\
    \midrule
    &&\dfrac{4x^3}{4}&=&\dfrac{108}{4} \\ \\
    &&x^3&=&27 \\
    &&\sqrt[3]{x^3}&=&\sqrt[3]{27} \\
    &&x&=&3
    \end{array}\)
  5. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    3x^2&+&1&=&73 \\
    &-&1&&-1 \\
    \midrule
    &&\dfrac{3x^2}{3}&=&\dfrac{72}{3} \\ \\
    &&x^2&=&24 \\
    &&\sqrt{x^2}&=&\pm \sqrt{24} \\
    &&x&=&\pm \sqrt{4\cdot 6} \\
    &&x&=&\pm 2\sqrt{6}
    \end{array}\)
  6. \(\sqrt{(x-4)^2}=\sqrt{49}\)

    \(\begin{array}{rrrrrrr}
    x&-&4&=&\pm 7 && \\
    &&x&=&4 & \pm & 7  \\
    &&x&=&11, & -3&
    \end{array}\)

  7. \(\sqrt[5]{(x+2)^5}=\sqrt[5]{-3^5}\)

    \(\begin{array}{rrrrr}
    x&+&2&=&-3 \\
    &-&2&&-2 \\
    \midrule
    &&x&=&-5
    \end{array}\)

  8. \(\sqrt[4]{(5x+1)^4}=\pm \sqrt[4]{2^4}\)

    \(\begin{array}{rrrrrrr}
    5x&+&1&=&\pm &2& \\
    &-&1&&-&1& \\
    \midrule
    &&5x&=&-1&\pm &2 \\ \\
    &&x&=&-\dfrac{3}{5}&\text{or}&\dfrac{1}{5}
    \end{array}\)

  9. \(\begin{array}{rrrrrrr}
    \\ \\ \\
    (2x&+&5)^3&-&6&=&21 \\
    &&&+&6&&+6 \\
    \midrule
    &&(2x&+&5)^3&=&27 \\
    \end{array}\)

    \(\sqrt[3]{(2x+5)^3}=\sqrt[3]{27}\)

    \(\begin{array}{rrrrr}
    2x&+&5&=&3 \\
    &-&5&&-5 \\
    \midrule
    &&2x&=&-2 \\
    &&x&=&-1
    \end{array}\)

  10. \(\begin{array}{rrrrrrr}
    \\ \\ \\
    (2x&+&1)^2&+&3&=&21 \\
    &&&-&3&&-3 \\
    \midrule
    &&(2x&+&1)^2&=&18
    \end{array}\)

    \(\sqrt{(2x+1)^2}&=&\sqrt{18} \Rightarrow \sqrt{9\cdot 2}\Rightarrow \pm 3\sqrt{2}\)

    \(\begin{array}{rrrrl}
    2x&+&1&=&\pm 3\sqrt{2} \\
    &-&1&&-1 \\
    \midrule
    &&\dfrac{2x}{2}&=&\dfrac{-1\pm 3\sqrt{2}}{2} \\ \\
    &&x&=&\dfrac{-1\pm 3\sqrt{2}}{2}
    \end{array}\)

  11. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\
    (x&-&1)^{\frac{2}{3}}&=&2^4 \\
    (x&-&1)^{\frac{2}{3}\cdot \frac{3}{2}}&=&2^{4\cdot \frac{3}{2}} \\
    x&-&1&=&\pm 2^6 \\
    &+&1&&+1 \\
    \midrule
    &&x&=&1 \pm 2^6 \\
    &&x&=&65\text{ or }-63
    \end{array}\)
  12. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\
    (x&-&1)^{\frac{3}{2}}&=&2^3 \\
    (x&-&1)^{\frac{3}{2}\cdot \frac{2}{3}}&=&2^{3\cdot \frac{2}{3}} \\
    x&-&1&=&2^2 \\
    &+&1&=&+1 \\
    \midrule
    &&x&=&5
    \end{array}\)
  13. \(\begin{array}{rrlrl}
    \\ \\ \\ \\ \\ \\
    (2&-&\phantom{-}x)^{\frac{3}{2}}&=&\phantom{-}3^3 \\
    (2&-&\phantom{-}x)^{\frac{3}{2}\cdot \frac{2}{3}}&=&\phantom{-}3^{3\cdot \frac{2}{3}} \\
    2&-&\phantom{-}x&=&\phantom{-}3^2 \\
    -2&&&&-2 \\
    \midrule
    &&-x&=&\phantom{-}7 \\
    &&\phantom{-}x&=&-7
    \end{array}\)
  14. \(\begin{array}{rrlrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    (2x&+&3)^{\frac{4}{3}}&=&2^4 \\
    (2x&+&3)^{\frac{4}{3}\cdot \frac{3}{4}}&=&2^{4\cdot \frac{3}{4}} \\
    2x&+&3&=&\pm 2^3 \\
    &-&3&&-3 \\
    \midrule
    &&2x&=&5 \\
    &&2x&=&-11 \\ \\
    &&x&=&\dfrac{5}{2}, -\dfrac{11}{2}
    \end{array}\)
  15. \(\begin{array}{rrlrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    (2x&-&3)^{\frac{2}{3}}&=&2^2 \\
    (2x&-&3)^{\frac{2}{3}\cdot \frac{3}{2}}&=&2^{2\cdot \frac{3}{2}} \\
    2x&-&3&=&\pm 2^3 \\
    &+&3&&+3 \\
    \midrule
    &&2x&=&11 \\
    &&2x&=&-5 \\ \\
    &&x&=&\dfrac{11}{2}, -\dfrac{5}{2}
    \end{array}\)
  16. \(\begin{array}{rrlrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    (3x&-&2)^{\frac{4}{5}}&=&2^4 \\
    (3x&-&2)^{\frac{4}{5}\cdot \frac{5}{4}}&=&2^{4\cdot \frac{5}{4}} \\
    3x&-&2&=&\pm 2^5 \\
    &+&2&&+2 \\
    \midrule
    &&\dfrac{3x}{3}&=&\dfrac{34}{3} \\ \\
    &&\dfrac{3x}{3}&=&\dfrac{-30}{3} \\ \\
    &&x&=&\dfrac{34}{3}, -10
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.