"

Final Exam: Version B Answer Key

[latexpage]

Questions from Chapters 1 to 3

  1. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\
    -2(-3)-\sqrt{(-3)^2-4(4)(-1)} \\ \\
    6-\sqrt{9+16} \\ \\
    6-5 \\ \\
    1
    \end{array}\)
  2. \(\begin{array}{rrrrrcllll}
    \\ \\ \\ \\ \\ \\ \\
    &18x&-&30&=&3[4&-&4x&-&7] \\
    &18x&-&30&=&3[-4x&-&3]&& \\
    &18x&-&30&=&-12x&-&\phantom{1}9&& \\
    +&12x&+&30&&+12x&+&30&& \\
    \midrule
    &&&30x&=&21&&&& \\ \\
    &&&x&=&\dfrac{21}{30}&=&\dfrac{7}{10}&&
    \end{array}\)
  3. \(\phantom{1}\)
    \(\left(\dfrac{x+4}{2}-\dfrac{1}{3}=\dfrac{x+2}{6}\right)(6) \\ \)
    \(\begin{array}{rrcrcrrrr}
    (x&+&4)(3)&-&1(2)&=&x&+&2 \\
    3x&+&12&-&2&=&x&+&2 \\
    -x&-&10&&&&-x&-&10 \\
    \midrule
    &&&&\dfrac{2x}{2}&=&\dfrac{-8}{2}&& \\ \\
    &&&&x&=&-4&&
    \end{array}\)
  4. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&&&m&=&\dfrac{\Delta y}{\Delta x}&& \\ \\
    &&&&\dfrac{2}{3}&=&\dfrac{y-4}{x-1}&& \\ \\
    &&2(x&-&1)&=&3(y&-&4) \\
    &&2x&-&2&=&3y&-&12 \\
    &&-3y&+&12&&-3y&+&12 \\
    \midrule
    2x&-&3y&+&10&=&0&& \\ \\
    &&&&y&=&\dfrac{2}{3}x&+&\dfrac{10}{3} \\
    \end{array}\)
  5. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\
    d^2&=&\Delta x^2+\Delta y^2 \\
    &=&(4--4)^2+(4--2)^2 \\
    &=&8^2+6^2 \\
    &=&64+36 \\
    &=&100 \\ \\
    d&=&10
    \end{array}\)
  6. \(3x-2y=6\)
    \(x\) \(y\)
    2 0
    0 −3
    −2 −6

    Line on graph passes through (-2,-6), (0,-4), (2,2)

  7. \(\begin{array}{rrrcrrr}
    \\ \\ \\ \\ \\
    3&\le &6x&+&3&<&9 \\
    -3&&&-&3&&-3 \\
    \midrule
    \dfrac{0}{6}&\le &&\dfrac{6x}{6}&&<&\dfrac{6}{6} \\ \\
    0&\le &&x&&<&1
    \end{array}\)
    \(\phantom{1}\)
    \((0,1)\)
    0,1
  8. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\
    \left(\dfrac{3x+1}{4}=2\right)^4 & \hspace{0.25in} \left(\dfrac{3x+1}{4}=-2\right)^4 \\
    \begin{array}{rrrrr}
    \\ \\
    3x&+&1&=&8 \\
    &-&1&&-1 \\
    \midrule
    &&3x&=&7 \\ \\
    &&x&=&\dfrac{7}{3}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    3x&+&1&=&-8 \\
    &-&1&&-1 \\
    \midrule
    &&3x&=&-9 \\
    &&x&=&-3
    \end{array}
    \end{array}\)
    x=-3, x=7 over 3
  9. \(\begin{array}{ll}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \hspace{0.75in} w_{\text{m}}=kw_e \\
    \begin{array}{rrl}
    \\ \\ \\
    &&\text{1st data} \\ \\
    w_{\text{m}}&=&38\text{ lb} \\
    k&=&\text{find 1st} \\
    w_{\text{e}}&=&95\text{ lb} \\ \\
    w_{\text{m}}&=&kw_{\text{e}} \\
    38&=&k(95) \\ \\
    k&=&\dfrac{38}{95} \\ \\
    k&=&0.4
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrl}
    &&\text{2nd data} \\ \\
    w_{\text{m}}&=&\text{find} \\
    k&=&0.4 \\
    w_{\text{e}}&=&240\text{ lb} \\ \\
    w_{\text{m}}&=&kw_{\text{e}} \\
    w_{\text{m}}&=&(0.4)(240) \\
    w_{\text{m}}&=&96\text{ lb}
    \end{array}
    \end{array}\)
  10. \(\phantom{1}\)
    \(x, x+2 \\ \)
    \(\begin{array}{rrrrrrrrrrr}
    x&+&x&+&2&=&x&+&2&-&20 \\
    &&2x&+&2&=&x&-&18&& \\
    &&-x&-&2&&-x&-&2&& \\
    \midrule
    &&&&x&=&-20&&&&
    \end{array}\)
    \(\phantom{1}\)
    \(\text{numbers are }-20, -18\)

Questions from Chapters 4 to 6

  1. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(4x&-&3y&=&13)(5) \\
    &(6x&+&5y&=&-9)(3) \\ \\
    &20x&-&15y&=&\phantom{-}65 \\
    +&18x&+&15y&=&-27 \\
    \midrule
    &&&38x&=&38 \\
    &&&x&=&1 \\ \\
    &4(1)&-&3y&=&13 \\
    &-4&&&&-4 \\
    \midrule
    &&&-3y&=&9 \\
    &&&y&=&-3
    \end{array}\)
    \((1,-3)\)
  2. \(\begin{array}{rrrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&&&x&=&-1-y \\ \\
    \therefore 3(-1&-&y)&-&4y&=&-5 \\
    -3&-&3y&-&4y&=&-5 \\
    +3&&&&&&+3 \\
    \midrule
    &&&&-7y&=&-2 \\
    &&&&y&=&\dfrac{2}{7} \\ \\
    &&x&+&y&=&-1 \\
    &&x&+&\dfrac{2}{7}&=&-1 \\ \\
    &&&-&\dfrac{2}{7}&&-\dfrac{2}{7} \\
    \midrule
    &&&&x&=&-\dfrac{9}{7}
    \end{array}\)
  3. \(\begin{array}{rrrrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&&(x&-&4z&=&0)(-1) \\ \\
    &x&+&2y&&&=&0 \\
    +&-x&&&+&4z&=&0 \\
    \midrule
    &&&(2y&+&4z&=&0)(\div 2) \\
    &&&y&+&2z&=&0 \\ \\
    &&&y&+&2z&=&0 \\
    &&+&y&-&2z&=&0 \\
    \midrule
    &&&&&2y&=&0 \\
    &&&&&y&=&0 \\ \\
    &&&\cancel{y}0&-&2z&=&0 \\
    &&&&&z&=&0 \\ \\
    &&&x&+&\cancel{2y}0&=&0 \\
    &&&&&x&=&0
    \end{array}\)
    \((0,0,0)\)
  4. \(\begin{array}{l}
    \\ \\ \\
    28-\{5\cancel{x^0}1-\cancel{\left[6x-3(5-2x)\right]^0}1\}+5\cancel{x^0}1 \\
    28-\{5-1\}+5 \\
    28-4+5 \\
    29
    \end{array}\)
  5. \(\begin{array}{rrrrrrrr}
    \\ \\ \\ \\ \\
    &x^2&-&3x&+&8\phantom{x}&& \\
    \times&&&x&-&4\phantom{x}&& \\
    \midrule
    &x^3&-&3x^2&+&8x&& \\
    +&&-&4x^2&+&12x&-&32 \\
    \midrule
    &x^3&-&7x^2&+&20x&-&32 \\
    \end{array}\)
  6. \(\begin{array}{l}
    \\ \\
    (x^{3n-6-3n})^{-1} \\
    (x^{-6})^{-1} \\
    x^6
    \end{array}\)
  7. \(5y(5y^2-3y+1)\)
  8. \(\begin{array}{l}
    \\
    x^3+(2y)^3 \\
    (x+2y)(x^2-2xy+4y^2)
    \end{array}\)
  9. Solution Amount Strength Equation
    Soda \(x\) 0 0
    Juice 2 35 2 (35)
    Diluted \(x+2\) 8 \((x+2)8\)

    \(\begin{array}{rrrrrl}
    &2(35)&=&8(x&+&2) \\
    &70&=&8x&+&16 \\
    -&16&&&-&16 \\
    \midrule
    &54&=&8x&& \\ \\
    &x&=&\dfrac{54}{8}&\text{ or }&6\dfrac{3}{4}\text{ litres} \\
    \end{array}\)

  10. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(d&+&q&=&14)(-10) \\
    &10d&+&25q&=&185 \\ \\
    &-10d&-&10q&=&-140 \\
    +&10d&+&25q&=&\phantom{-}185 \\
    \midrule
    &&&\dfrac{15q}{15}&=&\dfrac{45}{15} \\ \\
    &&&q&=&3 \\ \\
    &\therefore d&+&3&=&14 \\
    &&&d&=&11
    \end{array}\)

Questions from Chapters 7 to 10

  1. \(\dfrac{\cancel{9}\cancel{s^2}}{7t^3}\cdot \dfrac{15\cancel{t}}{\cancel{13}\cancel{s^2}}\cdot \dfrac{\cancel{26}2s}{\cancel{9}\cancel{t}}\Rightarrow \dfrac{15\cdot 2\cdot 5}{7t^3}\Rightarrow \dfrac{30s}{7t^3}\)
  2. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\
    \dfrac{(a-1)2a}{(a-1)(a-6)(a+6)}-\dfrac{5(a+6)}{(a-6)(a-1)(a+6)} \Rightarrow \dfrac{2a^2-2a-5a-30}{(a-1)(a-6)(a+6)} \\ \\
    \Rightarrow \dfrac{2a^2-7a-30}{(a-1)(a-6)(a+6)}\Rightarrow \dfrac{2a^2-12a+5a-30}{(a-1)(a-6)(a+6)} \\ \\
    \Rightarrow \dfrac{2a(a-6)+5(a-6)}{(a-1)(a-6)(a+6)}\Rightarrow \dfrac{\cancel{(a-6)}(2a+5)}{(a-1)\cancel{(a-6)}(a+6)}\Rightarrow \dfrac{2a+5}{(a-1)(a+6)}
    \end{array}\)
  3. \(\dfrac{\left(1-\dfrac{8}{x}\right)x^2}{\left(\dfrac{3}{x}-\dfrac{24}{x^2}\right)x^2}\Rightarrow \dfrac{x^2-8x}{3x-24}\Rightarrow \dfrac{x\cancel{(x-8)}}{3\cancel{(x-8)}}\Rightarrow \dfrac{x}{3}\)
  4. \(\begin{array}{l}
    \\ \\ \\ \\
    \sqrt{x^4\cdot x\cdot y^6\cdot y}+2xy\sqrt{16\cdot x\cdot y^2\cdot y}-\sqrt{x\cdot y^2\cdot y} \\ \\
    x^2y^3\sqrt{xy}+2xy\cdot 4y\sqrt{xy}-y\sqrt{xy} \\ \\
    (x^2y^3+8xy^2-y)\sqrt{xy}
    \end{array}\)
  5. \(\dfrac{2+x}{1-\sqrt{7}}\cdot \dfrac{1+\sqrt{7}}{1+\sqrt{7}}\Rightarrow \dfrac{2+2\sqrt{7}+x+x\sqrt{7}}{1-7}\Rightarrow \dfrac{2+x+2\sqrt{7}+x\sqrt{7}}{-6}\)
  6. \(\left(\dfrac{a^6b^3}{\cancel{c^0}1d^{-9}}\right)^{\frac{2}{3}}\Rightarrow \dfrac{a^{6\cdot \frac{2}{3}}b^{3\cdot \frac{2}{3}}}{d^{-9\cdot \frac{2}{3}}}\Rightarrow \dfrac{a^4b^2}{d^{-6}}\Rightarrow a^4b^2d^6\)
  7. \(\begin{array}{rrl}
    \\
    (x-5)(x+3)&=&0 \\
    x&=&5, -3
    \end{array}\)
  8. \(\phantom{1}\)
    \(\left(\dfrac{2x-1}{3x}=\dfrac{x-3}{x}\right)(3x) \\ \)
    \(\begin{array}{rrrrrrrr}
    &2x&-&1&=&(x&-&3)(3) \\ \\
    &2x&-&1&=&3x&-&9\phantom{)(3)} \\
    +&-3x&+&1&&-3x&+&1\phantom{)(3)} \\
    \midrule
    &&&-x&=&-8&& \\
    &&&x&=&8&&
    \end{array}\)
  9. \(\begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    A&=&L\cdot W \\
    L&=&5+2W \\ \\
    75&=&W(5+2W) \\
    75&=&5W+2W^2 \\ \\
    0&=&2W^2+5W-75 \\
    0&=&2W^2-10W+15W-75 \\
    0&=&2W(W-5)+15(W-5) \\
    0&=&(W-5)(2W+15) \\
    W&=&5, \cancel{-\dfrac{15}{2}} \\ \\
    L&=&5+2(5) \\
    L&=&15
    \end{array}\)
  10. \(\phantom{1}\)
    \(x, x+2, x+4 \\ \)
    \(\begin{array}{rrcrrrrrrrr}
    &&x(x&+&2)&=&8(x&+&4)&-&25 \\
    x^2&+&2x&&&=&8x&+&32&-&25 \\
    &-&8x&-&32&&-8x&-&32&+&25 \\
    &&&+&25&&&&&& \\
    \midrule
    x^2&-&6x&-&7&=&0&&&& \\
    (x&-&7)(x&+&1)&=&0&&&& \\
    &&&&x&=&7,&-1&&& \\
    \end{array}\)
    \(\phantom{1}\)
    \(\text{numbers are }7,9,11\text{ or }-1,1,3\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.