Answer Key 11.1
[latexpage]
-
- No
- Yes
- No
- Yes
- Yes
- No
- Yes
- \(y^2=1+x^2\)
\(y=\pm \sqrt{1+x^2}\)
No - \(\sqrt{y}=2-x\)
\(y=(2-x)^2\)
Yes - \(y^2=1-x^2\)
\(y=\pm \sqrt{1-x^2}\)
No
- All real numbers \(-\infty, \infty\)
- \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\
5&-&4x&\ge &0 \\
-5&&&&-5 \\
\midrule
&&\dfrac{-4x}{-4}&\ge &\dfrac{-5}{-4} \\ \\
&&x&\le &\dfrac{5}{4} \\
\end{array}\)\(\left(-\infty, \dfrac{5}{4}\right]\)
- \(t^2\neq 0\)
\(t\neq \sqrt{0}\text{ or }0\) - All real or \((-\infty, \infty)\)
- \(\begin{array}{rrrrr}
\\ \\ \\ \\ \\
t^2&+&1&\neq &0 \\
&-&1&&-1 \\
\midrule
&&t^2&\neq &-1 \\
&&t&\neq & i \\ \\
&&t&=&\mathbb{R}
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\
x&-&16&\ge &0 \\
&+&16&&+16 \\
\midrule
&&x&\ge &16 \\
\end{array}\)\([16, \infty)\)
- \(x^2-3x-4\neq 0\)
\((x-4)(x+1)\neq 0\)
\(x\neq 4,1\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrrrr}
\\ \\
3x&-&12&\ge &0 \\
&+&12&&+12 \\
\midrule
&&\dfrac{3x}{3}&\ge &\dfrac{12}{3} \\ \\
&&x&\ge &4
\end{array}
&\hspace{0.25in}
\begin{array}{rrl}
\\
x^2-25&\neq &0 \\
(x-5)(x+5)&\neq &0 \\
x&\neq &5, -5 \\ \\
\therefore x&\ge &4, \neq \pm 5
\end{array}
\end{array}\) - \(\begin{array}{rrl}
\\
g(0)&=&\cancel{4(0)}-4 \\
&=&-4
\end{array}\) - \(\begin{array}{rrl}
\\
g(2)&=&-3\cdot 5^{-2} \\
&=&-\dfrac{3}{25}
\end{array}\) - \(\begin{array}{rrl}
\\
f(-9)&=&(-9)^2+4 \\
&=&81+4 \\
&=&85
\end{array}\) - \(\begin{array}{rrl}
\\
f(10)&=&10-3 \\
&=&7
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\ \\ \\ \\ \\ \\
f(-2)&=&3^{-2}-2 \\ \\
&=&\dfrac{1}{9}-2 \\ \\
&=&\dfrac{1}{9}-\dfrac{18}{9} \\ \\
&=&-\dfrac{17}{9}
\end{array}\) - \(\begin{array}{rrl}
\\ \\
f(2)&=&-3^{2-1}-3 \\
&=&-3^1-3 \\
&=&-6
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\
k(2)&=&-2\cdot 4^{2(2)-2} \\
&=&-2\cdot 4^{4-2} \\
&=&-2\cdot 4^2 \\
&=&-32
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\ \\ \\ \\
p(-2)&=&-2\cdot 4^{2(-2)+1}+1 \\
&=&-2\cdot 4^{-4+1}+1 \\
&=&-2\cdot 4^{-3}+1 \\
&=&-\dfrac{2}{64}+1 \\ \\
&=&-\dfrac{1}{32}+1 \Rightarrow \dfrac{-31}{32}
\end{array}\) - \(\begin{array}{rrl}
\\
h(-4x)&=&(-4x)^3+2 \\
&=&-64x^3+2
\end{array}\) - \(\begin{array}{rrl}
\\ \\
h(n+2)&=&4(n+2)+2 \\
&=&4n+8+2 \\
&=&4n+10
\end{array}\) - \(\begin{array}{rrl}
\\ \\
h(-1+x)&=&3(-1+x)+2 \\
&=&-3+3x+2 \\
&=&3x-1
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\
h\left(\dfrac{1}{3}\right)&=&-3\cdot 2^{\frac{1}{3}+3} \\
&=& -2^3\cdot 3\sqrt[3]{2}\\
&=&-8\cdot 3\sqrt[3]{2} \\
&=&-24 \sqrt[3]{2}
\end{array}\) - \(\begin{array}{rrl}
\\
h(x^4)&=&(x^4)^2+1 \\
&=&x^8+1
\end{array}\) - \(\begin{array}{rrl}
\\
h(t^2)&=&(t^2)^2+t \\
&=&t^4+t
\end{array}\) - \(\begin{array}{rrl}
\\
f(0)&=&|\cancel{3(0)}+1|+1 \\
&=&1+1\text{ or }2
\end{array}\) - \(\begin{array}{rrl}
\\ \\ \\
f(-6)&=&-2 |-(-6)-2 | +1 \\
&=&-2 |6-2| + 1 \\
&=& -2(4)+1 \\
&=& -8 + 1\text{ or }-7
\end{array}\) - \(\begin{array}{rrl}
\\
f(10)&=&|10+3| \\
&=&13
\end{array}\) - \(\begin{array}{rrl}
\\ \\
p(5)&=&-|5|+1 \\
&=&-5+1 \\
&=& -4
\end{array}\)