"

Answer Key 10.6

[latexpage]

  1. \(\text{intercepts: }\)\(\begin{array}{rrl}
    y&=&0 \\
    0&=&x^2-2x-8 \\
    0&=&(x-4)(x+2) \\
    x&=&4,-2 \\
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{l}
    \left[\dfrac{-b}{2a}, f\left(\dfrac{-b}{2a}\right)\right] \\ \\
    (1,-9)
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=&\dfrac{-b}{2a} \\ \\
    x&=& \dfrac{-(-2)}{2(1)}\Rightarrow \dfrac{2}{2}\text{ or }1 \\ \\
    \therefore f(1)&=&1^2-2(1)-8 \\
    \phantom{\therefore}f(1)&=&-9
    \end{array}\)
    Graph with line of symetry through x axis at 1
  2. \(\text{intercepts: }\)\(\begin{array}{rrl}
    0&=&x^2-2x-3 \\
    0&=&(x-3)(x+1) \\
    x&=&3,-1
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=& \dfrac{-(-2)}{2(1)}\Rightarrow \dfrac{2}{2}\text{ or }1
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{rll}
    f(1)&=&1^2-2(1)-3 \\
    f(1)&=&1-2-3 \\
    f(1)&=&-4 \\ \\
    &&(1,-4)
    \end{array}\)
    Graph with line of symmetry through (1,0)
  3. \(\text{intercepts: }\)\(\begin{array}{rrl}
    0&=&2x^2-12x+10 \\
    0&=&2(x^2-6x+5) \\
    0&=&2(x-5)(x-1) \\
    x&=&5,1
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=&\dfrac{-b}{2a} \\ \\
    x&=& \dfrac{-6}{2(1)}\Rightarrow \dfrac{6}{2}\text{ or }3
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{rll}
    f(3)&=&2(3)^2-12(3)+10 \\
    f(3)&=&18-36+10 \\
    f(3)&=&-8 \\ \\
    &&(3,-8)
    \end{array}\)
    Test of intercept with line of symmetry through x=3
  4. \(\text{intercepts: }\)\(\begin{array}{rrl}
    0&=&2x^2-12x+16 \\
    0&=&2(x^2-6x+8) \\
    0&=&2(x-4)(x-2) \\
    x&=&4,2
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=&\dfrac{-b}{2a} \\ \\
    x&=& \dfrac{-(-12)}{2(2)}\Rightarrow \dfrac{12}{4}\text{ or }3
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{rll}
    f(3)&=&2(3)^2-12(3)+16 \\
    f(3)&=&18-36+16 \\
    f(3)&=&-2 \\ \\
    &&(3,-2)
    \end{array}\)
    Line of symmetry through x=4
  5. \(\text{intercepts: }\)\(\begin{array}{rrl}
    0&=&-2x^2+12x-18 \\
    0&=&-2(x^2-6x+9) \\
    0&=&-2(x-3)(x-3) \\
    x&=&3
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=&\dfrac{-b}{2a} \\ \\
    x&=& \dfrac{-12}{2(-2)}\Rightarrow \dfrac{-12}{-4}\text{ or }3
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{rll}
    f(3)&=&-2(3)^2-12(3)-18 \\
    f(3)&=&-18+36-18 \\
    f(3)&=&0 \\ \\
    &&(0,3)
    \end{array}\)
    Line of symmetry through x=4
  6. \(\text{intercepts: }\)\(\begin{array}{rrl}
    0&=&-2x^2+12x-10 \\
    0&=&-2(x^2-6x+5) \\
    0&=&-2(x-5)(x-1) \\
    x&=&5,1
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=&\dfrac{-b}{2a} \\ \\
    x&=& \dfrac{-12}{2(-2)}\Rightarrow \dfrac{-12}{-4}\text{ or }3
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{rll}
    f(3)&=&-2(3)^2-12(3)-10 \\
    f(3)&=&-18+36-10 \\
    f(3)&=&8 \\ \\
    &&(3,8)
    \end{array}\)
    Intercept test with line of symmetry through x=3
  7. \(\text{intercepts: }\)\(\begin{array}{rrl}
    0&=&-3x^2+24x-45 \\
    0&=&-3(x^2-8x+15) \\
    0&=&-3(x-3)(x-5) \\
    x&=&3,5
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=&\dfrac{-b}{2a} \\ \\
    x&=& \dfrac{-24}{2(-3)}\Rightarrow \dfrac{-24}{-6}\text{ or }4
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{rll}
    f(4)&=&-3(4)^2+24(4)-45 \\
    f(4)&=&-48+96-45 \\
    f(4)&=&3 \\ \\
    &&(4,3)
    \end{array}\)
    Line of symmtery x=5
  8. \(\text{intercepts: }\)\(\begin{array}{rrl}
    0&=&-2(x^2+2x)+6 \\
    0&=&-2x^2-4x+6 \\
    0&=&-2(x^2+2x-3) \\
    0&=&-2(x+3)(x-1) \\
    x&=&-3,1
    \end{array}\)\(\text{line of symmetry: }\)\(\begin{array}{rll}
    x&=&\dfrac{-b}{2a} \\ \\
    x&=& \dfrac{-(-4)}{2(-2)}\Rightarrow \dfrac{4}{-4}\text{ or }-1
    \end{array}\)\(\text{vertex: }\)\(\begin{array}{rll}
    f(-1)&=&-2(-1)^2-4(-1)+6 \\
    f(-1)&=&-2+4+6 \\
    f(-1)&=&8 \\ \\
    &&(-1,8)
    \end{array}\)
    Graph with line of symmetry x=-1
  9. \(\text{line of symmetry: } \\ \)
    \(x=\dfrac{-b}{2a}\Rightarrow \dfrac{-(-6)}{2(3)}\Rightarrow \dfrac{6}{6}\text{ or }1\)

    \(x\) \(y\)
    3 4
    2 −5
    1 −9
    0 −5
    −1 4

    Intercept test

  10. \(\text{line of symmetry: } \\ \)
    \(x=\dfrac{-b}{2a}\Rightarrow \dfrac{-(-4)}{2(2)}\Rightarrow \dfrac{4}{4}\text{ or }1\)

    \(x\) \(y\)
    3 3
    2 −3
    1 −5
    0 −3
    −1 3

    Line of symmetry x=1

  11. \(\text{line of symmetry: } \\ \)
    \(x=\dfrac{-b}{2a}\Rightarrow \dfrac{-4}{2(-1)}\Rightarrow \dfrac{-4}{-2}\text{ or }2\)

    \(x\) \(y\)
    5 −3
    4 2
    3 5
    2 6
    1 5
    0 2
    −1 −3

    Line of symmetry x=2

  12. \(\text{line of symmetry: } \\ \)
    \(x=\dfrac{-b}{2a}\Rightarrow \dfrac{-(-6)}{2(-3)}\Rightarrow \dfrac{6}{-6}\text{ or }-1\)

    \(x\) \(y\)
    1 −7
    0 2
    −1 5
    −2 2
    −3 −7

    Line of symmetry x=1

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.