Answer Key 8.7
[latexpage]
- \(\begin{array}{rrcrrrl}
\\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&2(x)&&&& \\ \\
3x(2x)&-&x&-&2&=&0 \\
6x^2&-&x&-&2&=&0 \\
(3x&-&2)(2x&+&1)&=&0 \\ \\
&&&&x&=&\dfrac{2}{3}, -\dfrac{1}{2}
\end{array}\) - \(\begin{array}{rrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&x&+&1&& \\ \\
(x&+&1)(x&+&1)&=&\phantom{-}4 \\
x^2&+&2x&+&1&=&\phantom{-}4 \\
&&&-&4&&-4 \\
\midrule
x^2&+&2x&-&3&=&0 \\
(x&-&1)(x&+&3)&=&0 \\ \\
&&&&x&=&1, -3
\end{array}\) - \(\begin{array}{rrcrrrllrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&x&-&4&&&&&& \\ \\
x(x&-&4)&+&20&=&5x&-&2(x&-&4) \\
x^2&-&4x&+&20&=&5x&-&2x&+&8 \\
&-&3x&-&8&&&-&3x&-&8 \\
\midrule
x^2&-&7x&+&12&=&0&&&& \\
(x&-&4)(x&-&3)&=&0&&&& \\ \\
&&&&x&=&3,&4&&&
\end{array}\) - \(\begin{array}{rrrrrrrrllr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&x&-&1&&&&&& \\ \\
x^2&+&6&+&x&-&2&=&\phantom{-}2x(x&-&1) \\
&&x^2&+&x&+&4&=&\phantom{-}2x^2&-&2x \\
&-&2x^2&+&2x&&&&-2x^2&+&2x \\
\midrule
&&-x^2&+&3x&+&4&=&0&& \\
&&x^2&-&3x&-&4&=&0&& \\
&&(x&-&4)(x&+&1)&=&0&& \\ \\
&&&&&&x&=&4, 1&& \\
\end{array}\) - \(\begin{array}{rrcrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&x&-&3&& \\ \\
x(x&-&3)&+&6&=&2x \\
x^2&-&3x&+&6&=&2x \\
&-&2x&&&&-2x \\
\midrule
x^2&-&5x&+&6&=&0 \\
(x&-&3)(x&-&2)&=&0 \\ \\
&&&&x&=&2, 3
\end{array}\) - \(\begin{array}{rrcrrrlrrrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(x&-&1)(3&-&x)&&&&&&&& \\ \\
(x&-&4)(3&-&x)&=&\phantom{-}12(x&-&1)&+&(x&-&1)(3&-&x) \\
-x^2&+&7x&-&12&=&\phantom{-}12x&-&12&-&x^2&+&4x&-&3 \\
+x^2&-&16x&+&15&&-12x&+&12&+&x^2&-&4x&+&3 \\
\midrule
&&-9x&+&3&=&0&&&&&&&& \\
&&&&3&=&9x&&&&&&&& \\ \\
&&&&x&=&\dfrac{3}{9}\hspace{0.1in}\text{ or}&\dfrac{1}{3}&&&&&&&
\end{array}\) - \(\begin{array}{rrcrcrrrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(2m&-&5)(3m&+&1)(2)&&&&&& \\ \\
3m(3m&+&1)(2)&-&7(2m&-&5)(2)&=&3(2m&-&5)(3m&+&1) \\
18m^2&+&6m&-&28m&+&70&=&18m^2&-&39m&-&15 \\
-18m^2&&&+&39m&+&15&&-18m^2&+&39m&+&15 \\
\midrule
&&&&17m&+&85&=&0&&&& \\
&&&&&-&85&&-85&&&& \\
\midrule
&&&&&&\dfrac{17m}{17}&=&\dfrac{-85}{17}&&&& \\ \\
&&&&&&m&=&-5&&&&
\end{array}\) - \(\begin{array}{rrcrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(1&-&x)(3&-&x)&& \\ \\
(4&-&x)(3&-&x)&=&12(1&-&x) \\
12&-&7x&+&x^2&=&12&-&12x \\
-12&+&12x&&&&-12&+&12x \\
\midrule
&&x^2&+&5x&=&0&& \\
&&x(x&+&5)&=&0&& \\ \\
&&&&x&=&0,&-5&
\end{array}\) - \(\begin{array}{crrrrrcrrrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&2(y&-&3)(y&-&4)&&&&&&&& \\ \\
7(2)(y&-&4)&-&1(y&-&3)(y&-&4)&=&(y&-&2)(2)(y&-&3) \\
14y&-&56&-&y^2&+&7y&-&12&=&2y^2&-&10y&+&12 \\ \\
&&&&-\phantom{0}y^2&+&21y&-&68&=&2y^2&-&10y&+&12 \\
&&&&-2y^2&+&10y&-&12&&-2y^2&+&10y&-&12 \\
\midrule
&&&&-3y^2&+&31y&-&80&=&0&&&& \\
&&&&3y^2&-&31y&+&80&=&0&&&& \\
&&&&(y&-&5)(3y&-&16)&=&0&&&& \\ \\
&&&&&&&&y&=&5, &\dfrac{16}{3}&&&
\end{array}\) - \(\begin{array}{rrrrrrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(x&+&2)(x&-&2)&&&& \\ \\
1(x&-&2)&+&1(x&+&2)&=&3x&+&8 \\
x&-&2&+&x&+&2&=&3x&+&8 \\
&&&&-2x&&&&-2x&& \\
\midrule
&&&&&&0&=&x&+&8 \\
&&&&&&-8&&&-&8 \\
\midrule
&&&&&&x&=&-8&&
\end{array}\) - \(\begin{array}{rrcrcrrrcrcrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(x&+&1)(x&-&1)(6)&&&&&&&&&& \\ \\
(x&+&1)(x&+&1)(6)&-&(x&-&1)(x&-&1)(6)&=&5(x&+&1)(x&-&1) \\
6(x^2&+&2x&+&1)&-&6(x^2&-&2x&+&1)&=&5(x^2&&-&&1) \\
6x^2&+&12x&+&6&-&6x^2&+&12x&-&6&=&5x^2&&&-&5 \\
&&&&&&&&&&24x&=&5x^2&&&-&5 \\
&&&&&&&&&&-24x&&&-&24x&& \\
\midrule
&&&&&&&&&&0&=&5x^2&-&24x&-&5 \\
&&&&&&&&&&0&=&(5x&+&1)(x&-&5) \\ \\
&&&&&&&&&&x&=&5, &-\dfrac{1}{5}&&&
\end{array}\) - \(\begin{array}{rrcrcrrrrrr}
\\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(x&+&3)(x&-&2)&&&& \\ \\
(x&-&2)(x&-&2)&-&1(x&+&3)&=&1 \\
x^2&-&4x&+&4&-&x&-&3&=&1 \\
&&&&&&&-&1&&-1 \\
\midrule
&&&&&&x^2&-&5x&=&0 \\
&&&&&&x(x&-&5)&=&0 \\ \\
&&&&&&&&x&=&0, 5
\end{array}\) - \(\begin{array}{rrrrcrrrrrcrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(x&-&1)(x&+&1)&&&&&& \\ \\
x(x&+&1)&-&2(x&-&1)&=&4x^2&&&& \\
x^2&+&x&-&2x&+&2&=&4x^2&&&& \\
-x^2&&&+&x&-&2&&-x^2&+&x&-&2 \\
\midrule
&&&&&&0&=&3x^2&+&x&-&2 \\
&&&&&&0&=&(3x&-&2)(x&+&1) \\ \\
&&&&&&0&=&\dfrac{2}{3},&-1&&&
\end{array}\) - \(\begin{array}{rrrrcrrrr}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(x&+&2)(x&-&4)&& \\ \\
2x(x&-&4)&+&2(x&+&2)&=&3x \\
2x^2&-&8x&+&2x&+&4&=&3x \\
&&&-&3x&&&&-3x \\
\midrule
&&2x^2&-&9x&+&4&=&0 \\
&&(2x&-&1)(x&-&4)&=&0 \\ \\
&&&&&&x&=&\dfrac{1}{2}, 4
\end{array}\) - \(\begin{array}{rrrrcrrrl}
\\ \\ \\ \\ \\ \\ \\ \\ \\
\text{LCD}&=&(x&+&1)(x&+&5)&& \\ \\
2x(x&+&5)&-&3(x&+&1)&=&-8x^2 \\
2x^2&+&10x&-&3x&-&3&=&-8x^2 \\
+8x^2&&&&&&&&+8x^2 \\
\midrule
&&10x^2&+&7x&-&3&=&0 \\
&&(10x&-&3)(x&+&1)&=&0 \\ \\
&&&&&&x&=&\dfrac{3}{10}, -1
\end{array}\)