"

Answer Key 8.6

[latexpage]

  1. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&5(2)&& \\ \\
    2(m&-&1)&=&5(8) \\
    2m&-&2&=&40 \\
    &+&2&&+2 \\
    \midrule
    &&\dfrac{2m}{2}&=&\dfrac{42}{2} \\ \\
    &&m&=&21
    \end{array}\)
  2. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&2(x&-&8) \\ \\
    8(x&-&8)&=&\phantom{+}2(8) \\
    8x&-&64&=&\phantom{+}16 \\
    &+&64&&+64 \\
    \midrule
    &&\dfrac{8x}{8}&=&\phantom{+}\dfrac{80}{8} \\ \\
    &&x&=&\phantom{+}10
    \end{array}\)
  3. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&9(p&-&4) \\ \\
    2(p&-&4)&=&9(10) \\
    2p&-&8&=&90 \\
    &+&8&&+8 \\
    \midrule
    &&\dfrac{2p}{2}&=&\dfrac{98}{2} \\ \\
    &&p&=&49
    \end{array}\)
  4. \(\begin{array}{rllll}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&9(n&+&2) \\ \\
    9(9)&=&3(n&+&2) \\
    81&=&3n&+&6 \\
    -6&&&-&6 \\
    \midrule
    \dfrac{75}{3}&=&\dfrac{3n}{3}&& \\ \\
    n&=&25&&
    \end{array}\)
  5. \(\begin{array}{rrlrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&10(a&+&2) \\ \\
    3(a&+&2)&=&10(a) \\
    3a&+&6&=&10a \\
    -3a&&&&-3a \\
    \midrule
    &&\dfrac{6}{7}&=&\dfrac{7a}{7} \\ \\
    &&a&=&\dfrac{6}{7}
    \end{array}\)
  6. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    \text{LCD}&=&3(4)&&&& \\ \\
    4(x&+&1)&=&3(x&+&3) \\
    4x&+&4&=&3x&+&9 \\
    -3x&-&4&&-3x&-&4 \\
    \midrule
    &&x&=&5&&
    \end{array}\)
  7. \(\begin{array}{rrrrcrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&3(p&+&4)&& \\ \\
    2(3)&=&(p&+&4)(p&+&5) \\
    6&=&p^2&+&9p&+&20 \\
    -6&&&&&-&6 \\
    \midrule
    0&=&p^2&+&9p&+&14 \\
    0&=&(p&+&7)(p&+&2) \\ \\
    p&=&-2,&-7&&& \\
    \end{array}\)
  8. \(\begin{array}{rrrrcrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&10(n&+&1)&& \\ \\
    5(10)&=&(n&-&4)(n&+&1) \\
    50&=&n^2&-&3n&-&4 \\
    -50&&&&&-&50 \\
    \midrule
    0&=&n^2&-&3n&-&54 \\
    0&=&(n&-&9)(n&+&6) \\ \\
    n&=&9,&-6&&&
    \end{array}\)
  9. \(\begin{array}{rrcrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&5(x&-&2)&& \\ \\
    (x&+&5)(x&-&2)&=&5(6) \\
    x^2&+&3x&-&10&=&\phantom{-}30 \\
    &&&-&30&&-30 \\
    \midrule
    x^2&+&3x&-&40&=&0 \\
    (x&-&5)(x&+&8)&=&0 \\ \\
    &&&&x&=&5, -7
    \end{array}\)
  10. \(\begin{array}{rrrrcrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&5(x&-&3)&& \\ \\
    20&=&(x&-&3)(x&+&5) \\
    20&=&x^2&+&2x&-&15 \\
    -20&&&&&-&20 \\
    \midrule
    0&=&x^2&+&2x&-&35 \\
    0&=&(x&-&5)(x&+&7) \\ \\
    x&=&5,&-7&&&
    \end{array}\)
  11. \(\begin{array}{rrcrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&4(m&-&4)&& \\ \\
    (m&+&3)(m&-&4)&=&4(11) \\
    m^2&-&m&-&12&=&\phantom{-}44 \\
    &&&-&44&&-44 \\
    \midrule
    (m^2&-&m&-&56)&=&0 \\
    (m&-&8)(m&+&7)&=&0 \\ \\
    &&&&m&=&8, -7
    \end{array}\)
  12. \(\begin{array}{rrcrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    \text{LCD}&=&8(x&-&1)&& \\ \\
    (x&-&5)(x&-&1)&=&4(8) \\
    x^2&-&6x&+&5&=&\phantom{-}32 \\
    &&&-&32&&-32 \\
    \midrule
    x^2&-&6x&-&27&=&0 \\
    (x&-&9)(x&+&3)&=&0 \\ \\
    &&&&x&=&9, -3
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.