"

Midterm 2: Prep Answer Key

[latexpage]

Midterm Two Review

  1. \(x-2y=-4\)
    \(x\) \(y\)
    −4 0
    0 2
    −2 1
    \(x+y=5\)
    \(x\) \(y\)
    0 5
    5 0
    2 3

  2. \(\begin{array}{rrcrlrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\
    2x&-&y&=&0&\Rightarrow &y=2x \\
    3x&+&4y&=&-22&& \\ \\
    \therefore 3x&+&4(2x)&=&-22&& \\
    3x&+&8x&=&-22&& \\
    &&11x&=&-22&& \\
    &&x&=&-2&& \\ \\
    &&y&=&2x&& \\
    &&y&=&2(-2)&=&-4 \\
    \end{array}\)
    \((-2,-4)\)
  3. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(2x&-&5y&=&15)(2) \\
    &(3x&+&2y&=&13)(5) \\
    \midrule
    &4x&-&10y&=&30 \\
    +&15x&+&10y&=&65 \\
    \midrule
    &&&19x&=&95 \\
    &&&x&=&5 \\ \\
    &\therefore 3(5)&+&2y&=&\phantom{-}13 \\
    &15&+&2y&=&\phantom{-}13 \\
    &-15&&&&-15 \\
    \midrule
    &&&2y&=&-2 \\
    &&&y&=&-1
    \end{array}\)
    \((5,-1)\)
  4. \(\begin{array}{rr}
    \begin{array}{rrrrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &&&(5x&+&6z&=&-4)(-1) \\ \\
    &5x&+&y&+&6z&=&-2 \\
    +&-5x&&&-&6z&=&\phantom{-}4 \\
    \midrule
    &&&&&y&=&2 \\ \\
    &&&\therefore 2y&-&3z&=&\phantom{-}3 \\
    &&&2(2)&-&3z&=&\phantom{-}3 \\
    &&&-4&&&&-4 \\
    \midrule
    &&&&&-3z&=&-1 \\
    &&&&&z&=&\dfrac{1}{3} \\
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\
    5x&+&6z&=&-4 \\
    5x&+&6\left(\dfrac{1}{3}\right)&=&-4 \\
    5x&+&2&=&-4 \\
    &-&2&&-2 \\
    \midrule
    &&5x&=&-6 \\
    &&x&=&-\dfrac{6}{5}
    \end{array}
    \end{array}\)
    \(-\dfrac{6}{5}, 2, \dfrac{1}{3}\)
  5. \(\begin{array}{rrrrrr}
    \\ \\ \\
    &4a^2&-&9a&+&2 \\
    &-a^2&+&4a&+&5 \\
    +&3a^2&-&a&+&9 \\
    \midrule
    &6a^2&-&6a&+&16
    \end{array}\)
  6. \(8x^4-12x^2y^2-15x^2y^2-3x^4\Rightarrow 5x^4-27x^2y^2\)
  7. \(\begin{array}{l}
    \\ \\ \\
    6-2\left[3x-20x+8-1\right] \\
    6-2\left[-17x+7\right] \\
    6+34x-14 \\
    34x-8
    \end{array}\)
  8. \(25a^{-10}b^6\text{ or } \dfrac{25b^6}{a^{10}}\)
  9. \(\begin{array}{l}
    \\
    8a^2(a^2+10a+25) \\
    8a^4+80a^3+200a^2
    \end{array}\)
  10. \(\begin{array}{l}
    \\
    4ab^2(a^2-4) \\
    4a^3b^2-16ab^2
    \end{array}\)
  11. \(\begin{array}{rrrrrrrr}
    \\ \\ \\ \\ \\
    &x^2&-&4x&+&7\phantom{x}&& \\
    \times &&&x&-&3\phantom{x}&& \\
    \midrule
    &x^3&-&4x^2&+&7x&& \\
    +&&-&3x^2&+&12x&-&21 \\
    \midrule
    &x^3&-&7x^2&+&19x&-&21 \\
    \end{array}\)
  12. \(\begin{array}{rrrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    &2x^2&+&x&-&3\phantom{x^2}&&&& \\
    \times &2x^2&+&x&-&3\phantom{x^2}&&&& \\
    \midrule
    &4x^4&+&2x^3&-&6x^2&&&& \\
    &&&2x^3&+&x^2&-&3x&& \\
    +&&&&&-6x^2&-&3x&+&9 \\
    \midrule
    &4x^4&+&4x^3&-&11x^2&-&6x&+&9
    \end{array}\)
  13. \(\begin{array}{rrrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    &x^2&+&5x&-&2\phantom{x^2}&&&& \\
    \times &2x^2&-&x&+&3\phantom{x^2}&&&& \\
    \midrule
    &2x^4&+&10x^3&-&4x^2&&&& \\
    &&&-x^3&-&5x^2&+&2x&& \\
    +&&&&&3x^2&+&15x&-&6 \\
    \midrule
    &2x^4&+&9x^3&-&6x^2&+&17x&-&6
    \end{array}\)
  14. \(\begin{array}{rrrrrrrrrr}
    \\ \\ \\ \\ \\
    (x+4)(x+4)&\Rightarrow &&x^2&+&8x&+&16&&  \\
    &&\times&&&x&+&4&&  \\
    \midrule
    &&&x^3&+&8x^2&+&16x&&  \\
    &&+&&&4x^2&+&32x&+&64  \\
    \midrule
    &&&x^3&+&12x^2&+&48x&+&64
    \end{array}\)
  15. \(r^{-4-3}s^{9+9}\Rightarrow r^{-7}s^{18}\Rightarrow \dfrac{s^{18}}{r^7}\)
    \(\dfrac{s^{18}}{r^7}\)
  16. \(\begin{array}{l}
    \\ \\
    (x^{-2--2}y^{-3-4})^{-1} \\
    (1\cancel{x^0}y^{-7})^{-1} \\
    y^7
    y^7
    \end{array}\)
  17. \(\polylongdiv{2x^3-7x^2+15}{x-2}\)
  18. \(2^3\cdot 11\)
  19. \(2^5\cdot 3\cdot 7
    \left\{
    \begin{array}{l}
    84=2^2\cdot 3\cdot 7 \\
    96=2^5\cdot 3
    \end{array}\right.\)
  20. \(x(5y+6z)-3(5y+6z)\)
    \((5y+6z)(x-3)\)
  21. \(-12=4\times -3\)
    \(1=4+-3 \\ \)
    \(x^2+4x-3x-12\)
    \(x(x+4)-3(x+4)\)
    \((x+4)(x-3)\)
  22. \(x^2(x+1)-4(x+1)\)
    \((x+1)(x^2-4)\)
    \(x+1)(x-2)(x+2)
  23. \(x^3-(3y)^3\)
    \((x-3y)(x^2+3xy+9y^2)\)
  24. \((x^2-36)(x^2+1)\)
    \((x-6)(x+6)(x^2+1)\)
  25. \(\begin{array}{lll}
    \begin{array}{rrrrl}
    (A&+&B&=&70)(-4) \\
    4A&+&7B&=&430
    \end{array}
    & \Rightarrow \hspace{0.25in}
    \begin{array}{rrrrrl}
    \\ \\ \\ \\
    &-4A&-&4B&=&-280 \\
    +&4A&+&7B&=&\phantom{-}430 \\
    \midrule
    &&&3B&=&\phantom{-}150 \\ \\
    &&&B&=&\dfrac{150}{3}\text{ or }50
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    \\ \\ \\
    \therefore A&+&B&=&70 \\ \\
    A&+&50&=&70 \\
    &&-50&&-50 \\
    \midrule
    &&A&=&20
    \end{array}
    \end{array}\)
  26. \(\begin{array}{rrcrrrl}
    \\ \\ \\ \\ \\ \\ \\
    5x&+&21(2)&=&11(x&+&2) \\ \\
    5x&+&42&=&11x&+&22 \\
    -5x&-&22&&-5x&-&22 \\
    \midrule
    &&20&=&6x&& \\ \\
    &&x&=&\dfrac{20}{6}&=&3\dfrac{1}{3}\text{ litres} \\
    \end{array}\)
  27. \(\phantom{1}\)
    \(B+G=16\Rightarrow B=16-G\text{ or }G=16-B \\ \)
    \(\begin{array}{ll}
    \begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    G&-&4&=&3(B&-&4) \\
    16-B&-&4&=&3B&-&12 \\
    +B&+&12&&+B&+&12 \\
    \midrule
    &&24&=&4B&& \\ \\
    &&B&=&\dfrac{24}{4}&=&6
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    \\
    \therefore G&=&16&-&B \\
    G&=&16&-&6 \\
    G&=&10&&
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.