Answer Key 6.7
- \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{20x^4}{4x^3}&+&\dfrac{x^3}{4x^3}&+&\dfrac{2x^2}{4x^3} \\ \\
5x&+&\dfrac{1}{4}&+&\dfrac{1}{2x}
\end{array}\) - \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{5x^4}{9x}&+&\dfrac{45x^3}{9x}&+&\dfrac{4x^2}{9x} \\ \\
\dfrac{5}{9}x^3&+&5x^2&+&\dfrac{4}{9}x
\end{array}\) - \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{20n^4}{10n}&+&\dfrac{n^3}{10n}&+&\dfrac{40n^2}{10n} \\ \\
2n^3&+&\dfrac{n^2}{10}&+&4n
\end{array}\) - \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{3k^3}{8k}&+&\dfrac{4k^2}{8k}&+&\dfrac{2k}{8k} \\ \\
\dfrac{3}{8}k^2&+&\dfrac{k}{2}&+&\dfrac{1}{4}
\end{array}\) - \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{12x^4}{6x}&+&\dfrac{24x^3}{6x}&+&\dfrac{3x^2}{6x} \\ \\
2x^3&+&4x^2&+&\dfrac{x}{2}
\end{array}\) - \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{5p^4}{4p}&+&\dfrac{16p^3}{4p}&+&\dfrac{16p^2}{4p} \\ \\
\dfrac{5}{4}p^3&+&4p^2&+&4p
\end{array}\) - \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{10n^4}{10n^2}&+&\dfrac{50n^3}{10n^2}&+&\dfrac{2n^2}{10n^2} \\ \\
n^2&+&5n&+&\dfrac{1}{5}
\end{array}\) - \(\begin{array}{ccccc}
\\ \\ \\
\dfrac{3m^4}{9m^2}&+&\dfrac{18m^3}{9m^2}&+&\dfrac{27m^2}{9m^2} \\ \\
\dfrac{m^2}{3}&+&2m&+&3
\end{array}\) - \(\enclose{longdiv}{45x^2 + 56x + 16} {9x + 4}\)
- \((6x^2+16x+16) \div (6x-2)\hspace{0.5in} \text{ or } x+3+\dfrac{22}{6x-2}\)
- \((10x^2 - 32x + 6) \div (10x - 2)\)
- \((x^2 + 7x + 12) \div (x + 4)\)
- \((4x^2 - 33x + 35) \div (4x - 5)\)
- \((4x^2 - 23x - 35) \div (4x + 5)\)
- \((x^3 + 15x^2 + 49x - 49) \div (x + 7)\)
- \((6x^3 - 12x^2 - 43x - 20) \div (x - 4)\)
- \((x^3 - 6x - 40) \div (x+4) \hspace{0.5in} \text{ or } x^2 - 4x + 10 - \dfrac{80}{x+4}\)
- \((x^3 - 16x^2 + 512) \div (x-8)\)
- \((x^3 - x^2 - 8x - 16) \div (x-4)\)
- \((2x^3 + 6x^2 + 4x + 12) \div (2x + 6)\)
- \((12x^3 + 12x^2 - 15x - 9) \div (2x + 3)\)
- \((4x^3 - 21x^2 + 6x + 18) \div (4x + 3)\)