"

Answer Key 5.6

  1. \(\begin{array}{rr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrrrrrrrrl}
    &t&+&x&+&y&+&z&=&\phantom{-}6 \\
    +&-t&+&x&-&y&-&z&=&-2 \\
    \hline
    &&&&&&&\dfrac{2x}{2}&=&\dfrac{4}{2} \\ \\
    &&&&&&&x&=&2 \\ \\
    &(-t&+&x&-&y&-&z&=&-2)(-1) \\
    &t&-&x&+&y&+&z&=&\phantom{-}2 \\
    +&-t&+&3x&+&y&-&z&=&\phantom{-}2 \\
    \hline
    &&&&&2x&+&2y&=&\phantom{-}4 \\ \\
    &&&&&2(2)&+&2y&=&\phantom{-}4 \\
    &&&&&-4&&&&-4 \\
    \hline
    &&&&&&&2y&=&\phantom{-}0 \\
    &&&&&&&y&=&\phantom{-}0
    \end{array}
    &\hspace{0.25in}
    \begin{array}{rrrrrrrrrl}
    &t&+&2x&+&2y&+&4z&=&17 \\
    +&-t&+&3x&+&y&-&z&=&2 \\
    \hline
    &&&5x&+&3y&+&3z&=&19 \\
    &&&5(2)&+&3(0)&+&3z&=&19 \\
    &&&&&10&+&3z&=&19 \\
    &&&&&-10&&&&-10 \\
    \hline
    &&&&&&&\dfrac{3z}{3}&=&\dfrac{9}{3} \\ \\
    &&&&&&&z&=&3 \\ \\
    &t&+&x&+&y&+&z&=&6 \\
    &t&+&2&+&0&+&3&=&6 \\
    &&&&&t&+&5&=&6 \\
    &&&&&&-&5&&-5 \\
    \hline
    &&&&&&&t&=&1 \\
    \end{array}
    \end{array}\)
  2. \(\phantom{1} \\ \)
    \(\begin{array}{rr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    \begin{array}{rrrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    &t&+&x&-&y&+&z&=&-1 \\
    +&-t&+&3x&+&y&-&z&=&1 \\
    \hline
    &&&&&&&4x&=&0 \\
    &&&&&&&x&=&0 \\ \\
    &&\therefore &t&-&y&+&z&=&-1 \\
    &&&-t&+&2y&+&z&=&3 \\
    &&&-t&+&y&-&z&=&1 \\
    &&&-2t&+&y&-&3z&=&0 \\ \\
    &&&-t&+&2y&+&z&=&3 \\
    +&&&-t&+&y&-&z&=&1 \\
    \hline
    &&&&&-2t&+&3y&=&4 \\ \\
    &&&(-t&+&y&-&z&=&1)(-3) \\
    &&&3t&-&3y&+&3z&=&-3 \\
    +&&&-2t&+&y&-&3z&=&0 \\
    \hline
    &&&&&(t&-&2y&=&-3)(2) \\
    &&&&&2t&-&4y&=&-6 \\
    +&&&&&-2t&+&3y&=&4 \\
    \hline
    &&&&&&&-y&=&-2 \\
    &&&&&&&y&=&2 \\
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrr}
    \\
    t&-&y&+&z&=&-1 \\
    t&-&2&+&z&=&-1 \\
    &+&2&&&&+2 \\
    \hline
    &&t&+&z&=&1 \\ \\
    -t&+&2y&+&z&=&3 \\
    -t&+&2(2)&+&z&=&3 \\
    -t&+&4&+&z&=&3 \\
    &-&4&&&&-4 \\
    \hline
    &&-t&+&z&=&-1 \\
    +&&t&+&z&=&1 \\
    \hline
    &&&&2z&=&0 \\
    &&&&z&=&0 \\ \\
    &&t&+&z&=&1 \\
    &&t&+&0&=&1 \\
    &&&&t&=&1 \\
    \end{array}
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.