"

Mid Term 1: Review Questions Answer Key

  1. True
  2. Undefined
  3. 15
  4. 16
  5. 12
  6. 19
  7. True
  8. −18
  9. 18
  10. −16
  11. 16
  12. −16
  13. \(\begin{array}{l}
    \\ \\ \\
    -(-6) - \sqrt{(-6)^2-4(8)(-2)} \\
    6 - \sqrt{36+64} \\
    6-10 \\
    -4
    \end{array}\)
  14. \(\begin{array}{rrrrrrrrrrrr}
    \\ \\ \\ \\ \\
    &3x&-&12&-&27&=&7&-&5x&-&30 \\
    +&5x&+&12&+&27&&&+&5x&+&12 \\
    &&&&&&&&&&+&7 \\
    &&&&&&&&&&+&27 \\
    \hline
    &&&&&8x&=&16&&&& \\
    &&&&&x&=&2&&&&
    \end{array}\)
  15. \(\begin{array}{l}
    \\ \\ \\ \\ \\ \\ \\
    \left(\dfrac{1}{R} = \dfrac{1}{r_1}+\dfrac{1}{r_2}\right)(Rr_1r_2) \\ \\
    r_1r_2 = Rr_2 + Rr_1 \\ \\
    r_1r_2 = R(r_2 + r_1) \\ \\
    R=\dfrac{r_1r_2}{r_2 + r_1}
    \end{array}\)
  16. \(\phantom{1}\)
    \(\left(\dfrac{x+3}{8} - \dfrac{3}{4} = \dfrac {x+6}{10}\right)(40) \\ \)
    \(\begin{array}{rrrrrcrrrr}
    &5(x&+&3)&-&3(10)&=&4(x&+&6) \\
    &5x&+&15&-&30&=&4x&+&24 \\
    -&4x&-&15&+&30&&-4x&-&15 \\
    &&&&&&&&+&30 \\
    \hline
    &&&&&x&=&39&&
    \end{array}\)
  17. Need graph drawn. \(y=5\)
  18. \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\
    m&=&\dfrac {\Delta y}{\Delta x}\\ \\
    \dfrac{2}{3}& =& \dfrac{y-2}{x- -1}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrrcl}
    \\ \\ \\ \\ \\
    &&2(x&+&1)& =& 3(y&-&2) \\
    &&2x &+& 2& = &3y& -& 6 \\
    &&-3y& + &6 &&-3y &+ &6 \\
    \hline
    2x&-&3y&+&8&=&0&& \\ \\
    &&&&y&=&\dfrac{2}{3}x&+&\dfrac{8}{3}
    \end{array}
    \end{array}\)
  19. \(\begin{array}{ll}
    \begin{array}{rrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    && \text{1st slope} \\ \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    m&=&\dfrac{11--1}{2--2} \\ \\
    m&=&\dfrac{12}{4} \\ \\
    m&=& 3 \\ \\
    && \text{2nd slope} \\ \\
    m&=&\dfrac{\Delta y}{\Delta x} \\ \\
    3&=&\dfrac{y--1}{x--2}
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    &&3(x&+&2)&=&y&+&1 \\
    &&3x&+&6&=&y&+&1 \\
    &&-y&-&1&&-y&-&1 \\
    \hline
    3x&-&y&+&5&=&0&& \\
    &&&&y&=&3x&+&5
    \end{array}
    \end{array}\)
  20. Line on graph intercepts (0,-1), (3,1)
    Use slop intercept method.
  21. \(\begin{array}{rrl}
    \\ \\ \\
    d^2& =& \Delta x^2 + \Delta y^2\\
    d^2 &=& (15-7)^2 + (3 - -3)^2\\
    d^2& =& 8^2 + 6^2 \\
    d&=&10
    \end{array}\)
  22. \(\phantom{1}\)
    \(x=\dfrac{x_1+x_2}{2}=\dfrac{7+15}{2}=11 \\ \)
    \(y=\dfrac{y_1+y_2}{2}=\dfrac{-3+3}{2}=0 \\ \)
    \((11,0)\)
  23. True
  24. True
  25. \(\{r, s, t\}\)
  26. True
  27. \(\begin{array}{rrrrrrr}
    \\ \\ \\
    3x&-&6&-&36x&>&60 \\
    &+&6&&&&+6 \\
    \hline
    &&&&-33x&>&66 \\
    &&&&x&<&-2
    \end{array}\)

    - infinity, 2
    (−∞, −2)
  28. \(\begin{array}{rrrcrcr}
    \\ \\ \\ \\ \\
    -18& \le& 4x& - &6& \le& 2\\
    +6&&&+&6&&+6\\
    \hline
    \dfrac{-12}{4}&\le&&\dfrac{4x}{4}&&\le&\dfrac{8}{4}\\ \\
    -3&\le&&x&&\le&2
    \end{array}\)

    -3, 2
    [−3, 2]
  29. \(\begin{array}{ll}
    \\ \\ \\ \\ \\
    \begin{array}{rrrrr}
    2x&-&1&<&-7 \\
    &+&1&&+1 \\
    \hline
    &&\dfrac{2x}{2}&<&\dfrac{-6}{2} \\ \\
    &&x&<&-3
    \end{array}
    & \hspace{0.25in}
    \begin{array}{rrrrr}
    7&<&2x&-&1 \\
    +1&&&+&1 \\
    \hline
    \dfrac{8}{2}&<&\dfrac{2x}{2}&& \\ \\
    4&<&x&&
    \end{array}
    \end{array}\)

    - infinity, -3 or 4, infinity
    (−∞, −3) or (4, ∞) WRONG IMAGE
  30. \(\phantom{1}\)
    \(\left| \dfrac{3x - 4}{5} \right| < 1 \\ \)
    \(\left(-1 < \dfrac{3x-4}{5}< 1 \right)(5) \\ \)
    \(\begin{array}{rrrrrrr}
    -5&<&3x&-&4&<&5 \\
    +4&&&+&4&&+4 \\
    \hline
    \dfrac{-1}{3}&<&&\dfrac{3x}{3}&&<&\dfrac{9}{3} \\ \\
    -\dfrac{1}{3}&<&&x&&<&3
    \end{array}\)

    -1/3, 3
    \((-\dfrac{1}{3}, 3)\)
  31. \(\begin{array}{rrrrrrrr}
    \\ \\ \\ \\ \\
    &3x&-&2y&=&10&& \\
    +&-10&+&2y&&-10&+&2y \\
    \hline
    &\dfrac{3x}{2}&-&\dfrac{10}{2}&=&\dfrac{2y}{2}&& \\ \\
    &&&y&=&\dfrac{3}{2}x&-&5
    \end{array}\)

    Line on graph passes through 0(-5), (2<-2), (4,1), (6,4)
    Slope intercept method. Check (0, 0): 3(0) − 2(0) < 10. Shade the (0, 0) side.
  32. \(y=|x-1|-2\)
    \(x\) \(y\)
    4 1
    3 0
    2 −1
    1 −2
    0 −1
    −1 0
    −2 1
  33. \(\begin{array}{rrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &6L&+&2S&=&38 \\
    +&4L&-&2S&=&12 \\
    \hline
    &&&10L&=&50 \\
    &&&L&=&5 \\ \\
    \therefore &6(5)&+&2S&=&38 \\
    &30&+&2S&=&38 \\
    -&30&&&&-30 \\
    \hline
    &&&2S&=&8 \\
    &&&S&=&4
    \end{array}\)
  34. Insert diagram.
    \(\begin{array}{rrl}
    5x+x&=&36 \\
    6x&=&36 \\
    x&=&6 \\
    \therefore 5x&=&30
    \end{array}\)
  35. \(\begin{array}{rrrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    &(d&+&q&=&14)(-10) \\
    &10d&+&25q&=&260 \\ \\
    &-10d&-&10q&=&-140 \\
    +&10d&+&25q&=&\phantom{-}260 \\
    \hline
    &&&\dfrac{15q}{15}&=&\dfrac{120}{15} \\ \\
    &&&q&=&8 \\ \\
    \therefore &d&+&8&=&14 \\
    &&-&8&&-8 \\
    \hline
    &&&d&=&6
    \end{array}\)
  36. \(\phantom{1}\)
    \(x, x+2 \\ \)
    \(\begin{array}{rrrrrrrrr}
    x&+&x&+&2&=&x&-&10 \\
    &&2x&+&2&=&x&-&10 \\
    &&-x&-&2&&-x&-&2 \\
    \hline
    &&&&x&=&-12&& \\
    \end{array}\)
    \(\phantom{1}\)
  37. \[
    \text{1st: } y = \frac{kmn^2}{d}
    \]\[
    \text{2nd: }
    \begin{aligned}
    y &= 12 \\
    k &= \text{find} \\
    m &= 3 \\
    n &= 4 \\
    d &= 8 \\[1em]
    12 &= \frac{k (3) (4)^2}{8} \\
    k &= \frac{12 \cdot 8}{3 \cdot 16} \\
    k &= 2
    \end{aligned}
    \]

    \[
    \text{3rd: }
    \begin{aligned}
    y &= \text{find} \\
    k &= 2 \\
    m &= -3 \\
    n &= 3 \\
    d &= 6 \\[1em]
    y &= \frac{(2)(-3)(3)^2}{6} \\
    y &= -9
    \end{aligned}
    \]

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.