Answer Key 2.5
- \(x=\pm 8\)
- \(n=\pm 7\)
- \(b=\pm 1\)
- \(x=\pm 2\)
- \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrrrr}
5&+&8a&=&53 \\
-5&&&&-5 \\
\hline
&&\dfrac{8a}{8}&=&\dfrac{48}{8} \\ \\
&&a&=&6
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrl}
5&+&8a&=&-53 \\
-5&&&&-5 \\
\hline
&&\dfrac{8a}{8}&=&\dfrac{-58}{8} \\ \\
&&a&=&-\dfrac{58}{8}\text{ or }-7\dfrac{1}{4}
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrrrl}
9n&+&8&=&46 \\
&-&8&&-8 \\
\hline
&&\dfrac{9n}{9}&=&\dfrac{38}{9} \\ \\
&&n&=&\dfrac{38}{9}\text{ or }4\dfrac{2}{9}
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
9n&+&8&=&-46 \\
&-&8&&-8 \\
\hline
&&\dfrac{9n}{9}&=&\dfrac{-54}{9} \\ \\
&&n&=&-6
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrrrr}
3k&+&8&=&2 \\
&-&8&&-8 \\
\hline
&&\dfrac{3k}{3}&=&\dfrac{-6}{3} \\ \\
&&k&=&-2
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
3k&+&8&=&-2 \\
&-&8&&-8 \\
\hline
&&\dfrac{3k}{3}&=&\dfrac{-10}{3} \\ \\
&&k&=&-\dfrac{10}{3}
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrrrl}
3&-&x&=&\phantom{-}6 \\
-3&&&&-3 \\
\hline
&&(-x&=&\phantom{-}3)(-1) \\
&&x&=&-3
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrl}
3&-&x&=&-6 \\
-3&&&&-3 \\
\hline
&&(-x&=&-9)(-1) \\
&&x&=&\phantom{-}9
\end{array}
\end{array}\) - \(\begin{array}{rrl}
\\ \\
\dfrac{-7}{-7}\left| -3-3r \right|&=&\dfrac{-21}{-7} \\
|-3-3r|&=&3
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
-3&-&3r&=&3 \\
+3&&&&+3 \\
\hline
&&\dfrac{-3r}{-3}&=&\dfrac{6}{-3} \\ \\
&&r&=&-2
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
-3&-&3r&=&-3 \\
+3&&&&+3 \\
\hline
&&\dfrac{-3r}{-3}&=&\dfrac{0}{-3} \\ \\
&&r&=&0
\end{array}
\end{array}\) - \(\begin{array}{rrrrr}
\\ \\
|2+2b|&+&1&=&3 \\
&-&1&&-1 \\
\hline
|2+2b|&&&=&2
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
2&+&2b&=&2 \\
-2&&&&-2 \\
\hline
&&2b&=&0 \\
&&b&=&0
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
2&+&2b&=&-2 \\
-2&&&&-2 \\
\hline
&&\dfrac{2b}{2}&=&\dfrac{-4}{2} \\ \\
&&b&=&-2
\end{array}
\end{array}\) - \(\begin{array}{rrl}
\\ \\
\dfrac{7}{7}|-7x-3|&=&\dfrac{21}{7} \\
|-7x-3|&=&3
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
\\ \\
-7x&-&3&=&3 \\
&+&3&&+3 \\
\hline
&&\dfrac{-7x}{-7}&=&\dfrac{6}{-7} \\ \\
&&x&=&-\dfrac{6}{7}
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
-7x&-&3&=&-3 \\
&+&3&&+3 \\
\hline
&&-7x&=&0 \\
&&x&=&0
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrrrr}
-4&-&3n&=&2 \\
+4&&&&+4 \\
\hline
&&\dfrac{-3n}{-3}&=&\dfrac{6}{-3} \\ \\
&&n&=&-2
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
-4&-&3n&=&-2 \\
+4&&&&+4 \\
\hline
&&\dfrac{-3n}{-3}&=&\dfrac{2}{-3} \\ \\
&&n&=&-\dfrac{2}{3}
\end{array}
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\
8|5p &+&8|&-&5&=&11 \\
&&&+&5&&+5 \\
\hline
&&\dfrac{8}{8}|5p &+&8|&=&\dfrac{16}{8} \\
&&|5p &+&8|&=&2
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
5p&+&8&=&2 \\
&-&8&&-8 \\
\hline
&&\dfrac{5p}{5}&=&\dfrac{-6}{5} \\ \\
&&p&=&-\dfrac{6}{5}
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
5p&+&8&=&-2 \\
&-&8&&-8 \\
\hline
&&\dfrac{5p}{5}&=&\dfrac{-10}{5} \\ \\
&&p&=&-2
\end{array}
\end{array}\) - \(\begin{array}{rrrrrrl}
\\ \\ \\ \\
3&-&|6n&+&7|&=&-40 \\
-3&&&&&&-3 \\
\hline
&&(-|6n&+&7|&=&-43)(-1) \\
&&|6n&+&7|&=&43
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
6n&+&7&=&43 \\
&-&7&&-7 \\
\hline
&&\dfrac{6n}{6}&=&\dfrac{36}{6} \\ \\
&&n&=&6
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
6n&+&7&=&-43 \\
&-&7&&-7 \\
\hline
&&\dfrac{6n}{6}&=&\dfrac{-50}{6} \\ \\
&&n&=&-\dfrac{25}{3}
\end{array}
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\
5|3&+&7m|&+&1&=&51 \\
&&&-&1&&-1 \\
\hline
&&\dfrac{5}{5}|3&+&7m|&=&\dfrac{50}{5} \\
&&|3&+&7m|&=&10
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
3&+&7m&=&10 \\
-3&&&&-3 \\
\hline
&&\dfrac{7m}{7}&=&\dfrac{7}{7} \\ \\
&&m&=&1
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
3&+&7m&=&-10 \\
-3&&&&-3 \\
\hline
&&\dfrac{7m}{7}&=&\dfrac{-13}{7} \\ \\
&&m&=&-\dfrac{13}{7}
\end{array}
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\
4|r&+&7|&+&3&=&59 \\
&&&-&3&&-3 \\
\hline
&&\dfrac{4}{4}|r&+&7|&=&\dfrac{56}{4} \\
&&|r&+&7|&=&14
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
r&+&7&=&14 \\
&-&7&&-7 \\
\hline
&&r&=&7
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
r&+&7&=&-14 \\
&-&7&&-7 \\
\hline
&&r&=&-21
\end{array}
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\
-7&+&8|-7x&-&3|&=&73 \\
+7&&&&&&+7 \\
\hline
&&\dfrac{8}{8}|-7x&-&3|&=&\dfrac{80}{8} \\
&&|-7x&-&3|&=&10
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
-7x&-&3&=&10 \\
&+&3&&+3 \\
\hline
&&\dfrac{-7x}{-7}&=&\dfrac{13}{-7} \\ \\
&&x&=&-\dfrac{13}{7}
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
-7x&-&3&=&-10 \\
&+&3&&+3 \\
\hline
&&\dfrac{-7x}{-7}&=&\dfrac{-7}{-7} \\ \\
&&x&=&1
\end{array}
\end{array}\) - \(\begin{array}{rrrrrrr}
\\ \\ \\ \\
8|3&-&3n|&-&5&=&91 \\
&&&+&5&&+5 \\
\hline
&&\dfrac{8}{8}|3&-&3n|&=&\dfrac{96}{8} \\
&&|3&-&3n|&=&12
\end{array}\)
\(\phantom{1}\)
\(\begin{array}{ll}
\begin{array}{rrrrr}
3&-&3n&=&12 \\
-3&&&&-3 \\
\hline
&&\dfrac{-3n}{-3}&=&\dfrac{9}{-3} \\ \\
&&n&=&-3
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrr}
3&-&3n&=&-12 \\
-3&&&&-3 \\
\hline
&&\dfrac{-3n}{-3}&=&\dfrac{-15}{-3} \\ \\
&&n&=&5
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\ \\
\begin{array}{rrrrrrr}
5x&+&3&=&2x&-&1 \\
-2x&-&3&&-2x&-&3 \\
\hline
&&\dfrac{3x}{3}&=&\dfrac{-4}{3}&& \\ \\
&&x&=&-\dfrac{4}{3}&&
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrrrr}
5x&+&3&=&-2x&+&1 \\
+2x&-&3&&+2x&-&3 \\
\hline
&&\dfrac{7x}{7}&=&\dfrac{-2}{7}&& \\ \\
&&x&=&-\dfrac{2}{7}&&
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrrrrrr}
\\ \\ \\
2&+&3x&=&4&-&2x \\
-2&+&2x&&-2&+&2x \\
\hline
&&\dfrac{5x}{5}&=&\dfrac{2}{5}&& \\ \\
&&x&=&\dfrac{2}{5}&&
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrrrr}
2&+&3x&=&-4&+&2x \\
-2&-&2x&&-2&-&2x \\
\hline
&&x&=&-6&&
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrrrrrr}
3x&-&4&=&2x&+&3 \\
-2x&+&4&&-2x&+&4 \\
\hline
&&x&=&7&&
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrlrr}
\\ \\ \\
3x&-&4&=&-2x&-&3 \\
+2x&+&4&&+2x&+&4 \\
\hline
&&\dfrac{5x}{5}&=&\dfrac{1}{5}&& \\ \\
&&x&=&\dfrac{1}{5}&&
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\
\begin{array}{rrrrrrr}
2x&-&5&=&3x&+&4 \\
-3x&+&5&&-3x&+&5 \\
\hline
&&-x&=&9&& \\
&&x&=&-9&&
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrlrr}
\\ \\
2x&-&5&=&-3x&-&4 \\
+3x&+&5&&+3x&+&5 \\
\hline
&&\dfrac{5x}{5}&=&\dfrac{1}{5}&& \\ \\
&&x&=&\dfrac{1}{5}&&
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\ \\ \\
\begin{array}{rrrrrrr}
4x&-&2&=&6x&+&3 \\
-6x&+&2&&-6x&+&2 \\
\hline
&&\dfrac{-2x}{-2}&=&\dfrac{5}{-2}&& \\ \\
&&x&=&-\dfrac{5}{2}&&
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrrrr}
4x&-&2&=&-6x&-&3 \\
+6x&+&2&&+6x&+&2 \\
\hline
&&\dfrac{10x}{10}&=&\dfrac{-1}{10}&& \\ \\
&&x&=&-\dfrac{1}{10}&&
\end{array}
\end{array}\) - \(\begin{array}{ll}
\\ \\
\begin{array}{rrrrrrr}
3x&+&2&=&2x&-&3 \\
-2x&-&2&&-2x&-&2 \\
\hline
&&x&=&-5&&
\end{array}
& \hspace{0.5in}
\begin{array}{rrrrlrr}
\\ \\ \\
3x&+&2&=&-2x&+&3 \\
+2x&-&2&&+2x&-&2 \\
\hline
&&\dfrac{5x}{5}&=&\dfrac{1}{5}&& \\ \\
&&x&=&\dfrac{1}{5}&&
\end{array}
\end{array}\)