"

Answer Key 2.3

  1. \(\begin{array}{rrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    2&-(-3a&-&8)&=&1 \\
    -2&&&&&-2 \\
    \hline
    &-(-3a&-&8)&=&-1 \\
    &3a&+&8&=&-1 \\
    &&-&8&&-8 \\
    \hline
    &&&3a&=&-9 \\
    &&&a&=&-3
    \end{array}\)
  2. \(\begin{array}{rrcrc}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    2(-3n&+&8)&=&-20\\ \\
    \dfrac{2}{2}(-3n&+&8)&=&\dfrac{-20}{2} \\ \\
    -3n&+&8&=&-10 \\
    &-&8&&-8 \\
    \hline
    &&\dfrac{-3n}{-3}&=&\dfrac{-18}{-3} \\ \\
    &&n&=&6
    \end{array}\)
  3. \(\begin{array}{rrcrc}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    -5(-4&+&2v)&=&-50\\ \\
    \dfrac{-5}{-5}(-4&+&2v)&=&\dfrac{-50}{-5}\\ \\
    -4&+&2v&=&10 \\
    +4&&&&+4 \\
    \hline
    &&\dfrac{2v}{2}&=&\dfrac{14}{2}\\ \\
    &&v&=&7
    \end{array}\)
  4. \(\begin{array}{rrcrrrl}
    \\ \\ \\ \\ \\ \\ \\ \\
    2&-&8(-4&+&3x)&=&34 \\
    -2&&&&&&-2 \\
    \hline
    &&\dfrac{-8}{-8}(-4&+&3x)&=&\dfrac{32}{-8} \\ \\
    &&-4&+&3x&=&-4 \\
    &&+4&&&&+4 \\
    \hline
    &&&&3x&=&0 \\
    &&&&x&=&0
    \end{array}\)
  5. \(\begin{array}{rrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\
    \dfrac{66}{6}&=&\dfrac{6}{6}(6&+&5x) \\ \\
    11&=&6&+&5x \\
    -6&&-6&& \\
    \hline
    \dfrac{5}{5}&=&\dfrac{5x}{5}&& \\ \\
    x&=&1&&
    \end{array}\)
  6. \(\begin{array}{rrcrcrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    32&=&\phantom{-}2&-&5(-4n&+&6) \\
    -2&&-2&&&& \\
    \hline
    \dfrac{30}{-5}&=&\dfrac{-5}{-5}(-4n&+&6)&& \\ \\
    -6&=&-4n&+&6&& \\
    -6&&&-&6&& \\
    \hline
    \dfrac{-12}{-4}&=&\dfrac{-4n}{-4}&&&& \\ \\
    n&=&3&&&&
    \end{array}\)
  7. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
    -2&+&2(8x&-&9)&=&-16 \\
    +2&&&&&&+2 \\
    \hline
    &&\dfrac{2}{2}(8x&-&9)&=&\dfrac{-14}{2} \\ \\
    &&8x&-&9&=&-7 \\
    &&&+&9&&+9 \\
    \hline
    &&&&8x&=&2 \\ \\
    &&&&x&=&\dfrac{1}{4}
    \end{array}\)
  8. \(\begin{array}{rrrrl}
    \\ \\ \\ \\ \\
    -3&+&5n&=&12 \\
    +3&&&&+3 \\
    \hline
    &&\dfrac{5n}{5}&=&\dfrac{15}{5} \\ \\
    &&n&=&3
    \end{array}\)
  9. \(\begin{array}{rrrrlll}
    \\ \\ \\
    -1&-&7m&=&-8m&+&7 \\
    -7&+&7m&&+7m&-&7 \\
    \hline
    &&(-8&=&-m)(-1)&& \\
    &&m&=&8&&
    \end{array}\)
  10. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    56p&-&48&=&6p&+&2 \\
    -6p&+&48&&-6p&+&48 \\
    \hline
    &&\dfrac{50p}{50}&=&\dfrac{50}{50}&& \\ \\
    &&p&=&1&&
    \end{array}\)
  11. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    1&-&12r&=&29&-&8r \\
    -1&+&8r&&-1&+&8r \\
    \hline
    &&\dfrac{-4r}{-4}&=&\dfrac{28}{-4}&& \\ \\
    &&r&=&-7&&
    \end{array}\)
  12. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    4&+&3x&=&-12x&+&4 \\
    -4&+&12x&&+12x&-&4 \\
    \hline
    &&15x&=&0&& \\
    &&x&=&0&&
    \end{array}\)
  13. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    20&-&7b&=&-12b&+&30 \\
    -20&+&12b&&+12b&-&20 \\
    \hline
    &&\dfrac{5b}{5}&=&\dfrac{10}{5}&& \\ \\
    &&b&=&2&&
    \end{array}\)
  14. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    -16n&+&12&=&39&-&7n \\
    +7n&-&12&&-12&+&7n \\
    \hline
    &&\dfrac{-9n}{-9}&=&\dfrac{27}{-9}&& \\ \\
    &&n&=&-3&&
    \end{array}\)
  15. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\ \\
    -2&-&5(2&-&4m)&=&33&+&5m \\
    +2&&&&&&+2&& \\
    \hline
    &&-10&+&20m&=&35&+&5m \\
    &&+10&-&5m&&+10&-&5m \\
    \hline
    &&&&\dfrac{15m}{15}&=&\dfrac{45}{15}&& \\ \\
    &&&&m&=&3&&
    \end{array}\)
  16. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    -25&-&7x&=&12x&-&6 \\
    +25&-&12x&&-12x&+&25 \\
    \hline
    &&\dfrac{-19x}{-19}&=&\dfrac{19}{-19}&& \\ \\
    &&x&=&-1&&
    \end{array}\)
  17. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    -4n&+&11&=&2&-&16n&+&3n \\
    +16n&-&11&&-11&+&16n&-&3n \\
    -3n&&&&&&&& \\
    \hline
    &&\dfrac{9n}{9}&=&\dfrac{-9}{9}&&&& \\ \\
    &&n&=&-1&&&&
    \end{array}\)
  18. \(\begin{array}{rrrrrrr}
    \\ \\ \\ \\ \\
    -7&-&7b&=&-5&-&5b \\
    +7&+&5b&&+7&+&5b \\
    \hline
    &&\dfrac{-2b}{-2}&=&\dfrac{2}{-2}&& \\ \\
    &&b&=&-1&&
    \end{array}\)
  19. \(\begin{array}{rrrrlrrrr}
    \\ \\ \\ \\ \\ \\
    -6v&-&29&=&-4v&-&5v&-&5 \\
    +4v&+&29&&+4v&+&5v&+&29 \\
    +5v&&&&&&&& \\
    \hline
    &&\dfrac{3v}{3}&=&\dfrac{24}{3}&&&& \\ \\
    &&v&=&8&&&&
    \end{array}\)
  20. \(\begin{array}{rrcrrrr}
    \\ \\ \\
    -64r&+&16&=&3r&+&16 \\
    -3r&-&16&&-3r&-&16 \\
    \hline
    &&-67r&=&0&& \\
    &&r&=&0&&
    \end{array}\)
  21. \(\begin{array}{rrcrrrr}
    \\ \\ \\ \\ \\
    8x&-&8&=&-20&-&4x \\
    +4x&+&8&&+8&+&4x \\
    \hline
    &&\dfrac{12x}{12}&&\dfrac{-12}{12}&& \\ \\
    &&x&=&-1&&
    \end{array}\)
  22. \(\begin{array}{rrrrlrrrr}
    \\ \\ \\ \\ \\ \\
    -8n&-&19&=&-16n&+&6&+&3n \\
    +16n&+&19&&+16n&+&19&-&3n \\
    -3n&&&&&&&& \\
    \hline
    &&\dfrac{5n}{5}&=&\dfrac{25}{5}&&&& \\ \\
    &&n&=&5&&&&
    \end{array}\)
  23. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    -2m&+&4&+&7m&-&56&=&-67 \\
    &-&4&&&+&56&&+56 \\
    &&&&&&&&-4 \\
    \hline
    &&&&&&\dfrac{5m}{5}&=&\dfrac{-15}{5} \\ \\
    &&&&&&m&=&-3
    \end{array}\)
  24. \(\begin{array}{rrlrrrrrr}
    \\ \\ \\ \\
    7&=&4n&-&28&+&35n&+&35 \\
    +28&&&+&28&&&-&35 \\
    -35&&&&&&&& \\
    \hline
    0&=&39n&&&&&& \\
    n&=&0&&&&&&
    \end{array}\)
  25. \(\begin{array}{rrlrrrrrr}
    \\ \\ \\ \\
    50&=&\phantom{-}56&+&56r&-&4r&-&6 \\
    -56&&-56&&&&&+&6 \\
    +6&&&&&&&& \\
    \hline
    0&=&52r&&&&&& \\
    r&=&0&&&&&&
    \end{array}\)
  26. \(\begin{array}{rrrrrrrrr}
    \\ \\ \\ \\ \\ \\
    -48&-&48x&-&12&+&24x&=&-12 \\
    +48&&&+&12&&&&+12 \\
    &&&&&&&&+48 \\
    \hline
    &&&&&&\dfrac{-24x}{-24}&=&\dfrac{48}{-24} \\ \\
    &&&&&&x&=&-2
    \end{array}\)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.