Answer Key 11.1
-
- No
- Yes
- No
- Yes
- Yes
- No
- Yes
- [latex]y^2=1+x^2[/latex]
[latex]y=\pm \sqrt{1+x^2}[/latex]
No - [latex]\sqrt{y}=2-x[/latex]
[latex]y=(2-x)^2[/latex]
Yes - [latex]y^2=1-x^2[/latex]
[latex]y=\pm \sqrt{1-x^2}[/latex]
No
- All real numbers [latex]-\infty, \infty[/latex]
- [latex]\begin{array}{rrrrr} \\ \\ \\ \\ \\ 5&-&4x&\ge &0 \\ -5&&&&-5 \\ \hline &&\dfrac{-4x}{-4}&\ge &\dfrac{-5}{-4} \\ \\ &&x&\le &\dfrac{5}{4} \\ \end{array}[/latex]
[latex]\left(-\infty, \dfrac{5}{4}\right][/latex]
- [latex]t^2\neq 0[/latex]
[latex]t\neq \sqrt{0}\text{ or }0[/latex] - All real or [latex](-\infty, \infty)[/latex]
- [latex]\begin{array}{rrrrr} \\ \\ \\ \\ \\ t^2&+&1&\neq &0 \\ &-&1&&-1 \\ \hline &&t^2&\neq &-1 \\ &&t&\neq & i \\ \\ &&t&=&\mathbb{R} \end{array}[/latex]
- [latex]\begin{array}{rrrrr} \\ \\ x&-&16&\ge &0 \\ &+&16&&+16 \\ \hline &&x&\ge &16 \\ \end{array}[/latex]
[latex][16, \infty)[/latex]
- [latex]x^2-3x-4\neq 0[/latex]
[latex](x-4)(x+1)\neq 0[/latex]
[latex]x\neq 4,1[/latex] - [latex]\begin{array}{ll} \\ \\ \\ \begin{array}{rrrrr} \\ \\ 3x&-&12&\ge &0 \\ &+&12&&+12 \\ \hline &&\dfrac{3x}{3}&\ge &\dfrac{12}{3} \\ \\ &&x&\ge &4 \end{array} &\hspace{0.25in} \begin{array}{rrl} \\ x^2-25&\neq &0 \\ (x-5)(x+5)&\neq &0 \\ x&\neq &5, -5 \\ \\ \therefore x&\ge &4, \neq \pm 5 \end{array} \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ g(0)&=&\cancel{4(0)}-4 \\ &=&-4 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ g(2)&=&-3\cdot 5^{-2} \\ &=&-\dfrac{3}{25} \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ f(-9)&=&(-9)^2+4 \\ &=&81+4 \\ &=&85 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ f(10)&=&10-3 \\ &=&7 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ \\ \\ \\ \\ \\ \\ f(-2)&=&3^{-2}-2 \\ \\ &=&\dfrac{1}{9}-2 \\ \\ &=&\dfrac{1}{9}-\dfrac{18}{9} \\ \\ &=&-\dfrac{17}{9} \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ f(2)&=&-3^{2-1}-3 \\ &=&-3^1-3 \\ &=&-6 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ \\ k(2)&=&-2\cdot 4^{2(2)-2} \\ &=&-2\cdot 4^{4-2} \\ &=&-2\cdot 4^2 \\ &=&-32 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ \\ \\ \\ \\ p(-2)&=&-2\cdot 4^{2(-2)+1}+1 \\ &=&-2\cdot 4^{-4+1}+1 \\ &=&-2\cdot 4^{-3}+1 \\ &=&-\dfrac{2}{64}+1 \\ \\ &=&-\dfrac{1}{32}+1 \Rightarrow \dfrac{-31}{32} \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ h(-4x)&=&(-4x)^3+2 \\ &=&-64x^3+2 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ h(n+2)&=&4(n+2)+2 \\ &=&4n+8+2 \\ &=&4n+10 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ h(-1+x)&=&3(-1+x)+2 \\ &=&-3+3x+2 \\ &=&3x-1 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ \\ h\left(\dfrac{1}{3}\right)&=&-3\cdot 2^{\frac{1}{3}+3} \\ &=& -2^3\cdot 3\sqrt[3]{2}\\ &=&-8\cdot 3\sqrt[3]{2} \\ &=&-24 \sqrt[3]{2} \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ h(x^4)&=&(x^4)^2+1 \\ &=&x^8+1 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ h(t^2)&=&(t^2)^2+t \\ &=&t^4+t \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ f(0)&=&|\cancel{3(0)}+1|+1 \\ &=&1+1\text{ or }2 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ \\ f(-6)&=&-2 |-(-6)-2 | +1 \\ &=&-2 |6-2| + 1 \\ &=& -2(4)+1 \\ &=& -8 + 1\text{ or }-7 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ f(10)&=&|10+3| \\ &=&13 \end{array}[/latex]
- [latex]\begin{array}{rrl} \\ \\ p(5)&=&-|5|+1 \\ &=&-5+1 \\ &=& -4 \end{array}[/latex]